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EXACT WIENER INDICES OF THE STRONG PRODUCT

OF GRAPHS

K. PATTABIRAMAN1

Abstract. The Wiener index, denoted by W (G), of a connected graph
G is the sum of all pairwise distances of vertices of the graph, that is,
W (G) = 1

2

∑

u,v∈V (G)

d(u, v). In this paper, we obtain the Wiener index of

the strong product of a path and a cycle and strong product of two cycles.
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1. Introduction

The strong product of graphs G and H, denoted by G ⊠ H, is the graph
with vertex set V (G) × V (H) = {(u, v) : u ∈ V (G), v ∈ V (H)}, where (u, x)
is adjacent to (v, y) whenever (i) u = v and xy ∈ E(H), or (ii) uv ∈ E(G)
and x = y, or (iii) uv ∈ E(G) and xy ∈ E(H). Let G and H be graphs
with vertex sets V (G) = {x1, x2, . . . , xm} and V (H) = {y1, y2, . . . , yn} . Then
V (G ⊠ H) = V (G) × V (H) and for our convenience, we write V (G ⊠ H) =
⋃m

i=1 Xi, where Xi = {xi} × V (H); we may also write V (G ⊠ H) =
⋃n

j=1 Yj,

where Yj = V (G)×{yj} . We shall denote the vertices of Xi by {xi,j |1 ≤ j ≤ n}
and the vertices of Yj by {xi,j |1 ≤ i ≤ m}, where xi,j stands for the vertex

(xi, yj). We shall call Xi, 1 ≤ i ≤ m, the ith layer of G ⊠ H and Yj , 1 ≤ j ≤ n,

the jth column of G ⊠ H, see Fig.1. For terms not defined here see [1] or [8].
The Cartesian product, G� H, of graphs G and H has the vertex set

V (G� H) = V (G) × V (H) and (u, x)(v, y) is an edge of G� H if u = v

and xy ∈ E(H) or, uv ∈ E(G) and x = y. For two simple graphs G and H

their tensor product, denoted by G×H, has vertex set V (G)×V (H) in which
(g1, h1) and (g2, h2) are adjacent whenever g1g2 is an edge in G and h1h2 is
an edge in H. Note that if G and H are connected graphs, then G × H is
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connected only if at least one of the graph is nonbipartite. One can observe
that G ⊠ H = (G ×H)⊕ (G�H), where ⊕ denotes the edge disjoint union of
graphs, see Fig.1.
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Graph theory successfully provides the chemists with a variety of very useful
tools, namely, different topological indices. A topological index of a graph is
a parameter related to the graph; it does not depend on labeling or pictorial
representation of the graph. In theoretical chemistry, molecular structure de-
scriptors (also called topological indices) are used for modeling physicochem-
ical, pharmacologic, toxicologic, biological and other properties of chemical
compounds [6]. Several types of such indices exist, especially those based on
vertex and edge distances. One of the most intensively studied topological
indices is the Wiener index.

The Wiener index, W (G), of a connected graph G, is defined by W (G) =
1
2

∑

u,v∈V (G)

dG(u, v), where dG(u, v) denotes the distance between the distinct

vertices u and v in graph G. The Wiener index has important applications
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in chemistry. The graphical invariant W (G) has been studied by many re-
searchers under different names such as distance, transmissions, total status
and sum of all distances; see [4],[5], [10] and [11]. The chemist Harold Wiener
was the first to point out in 1947 that W (G) is well correlated with certain
physico-chemical properties of the organic compound.

Besides applications in chemistry, there are many situations in communi-
cation, facility location, cryptology, etc., that are effectively modeled by a
connected graph G satisfying certain restrictions. Because of cost restraints
one is often interested in finding a spanning tree of G that is optimal with
respect to one or more properties. Average distance between vertices is fre-
quently one of these properties. Finding a spanning tree T of G that has
minimum Wiener index is proved to be important see, [9]. For recent results
on Wiener index, see [2, 15, 12, 14, 13]. Wiener indices of Cartesian product
and tensor product of graphs are given in [7, 13]. In this paper, we obtain the
exact Wiener index of Pr ⊠ Cs and Cr ⊠ Cs.

2. Wiener index of strong product of paths and cycles

We quote the following lemma which is not difficult to prove.

Lemma 1. [3]

(1) W (Pn) = (n+1
3 ), n ≥ 2.

(2) W (C2n) = n3.

(3) W (C2n+1) = n(n+1)(2n+1)
2 .

Proof of Lemma 1 is given in [3]. The following lemma is very useful to find
a shortest path from any pair of vertices of G ⊠ H.

Lemma 2. [2] Let G and H be two graphs and (u, x), (v, y) ∈ V (G⊠H). Then

dG⊠H((u, x), (v, y)) = max{dG(u, v), dH (x, y)}.

Theorem 3. The Wiener index of P2m+1 ⊠C2n+1 is
(2m+1)(2n+1)

6

{
2m(2m2 +

3m + 1) + 3n(n + 1)(2m + 1)
}
.

Proof. Let Skj denote the sum of the distances from xk,j to all other vertices
of G = P2m+1 ⊠ C2n+1, that is,

∑

v 6=xk,j∈V (G)

dG(xk,j, v). Since there is an au-

tomorphism of G which maps xk,i to xk,j, i 6= j, Skj = Ski. Hence, instead
of computing Srs for every pair r and s, it is enough to compute Sk1 for
k = 1, 2, . . . , 2m + 1, and then multiply each Sk1 with number of columns of
G to compute

∑

u,v∈V (G)

dG(u, v).

For the computation of Sk1, for a fixed k, we partition the layers of G
into three sets {X1,X2, . . . ,Xk−1}, {Xk} and {Xk+1,Xk+2, . . . ,X2m+1} (Note
that when k = 1 or 2m + 1, the partition consists of only two sets, namely,
{X1}, {X2,X3, . . . ,X2m+1} and {X1,X2, . . . ,X2m}, {X2m+1}, respectively)
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and we find the distances from xk,1 to all the vertices in the layers in the
partition separately, that is,

∑

v∈V (G)

dG(xk,1, v) =
∑

v∈Xi
1≤i≤k−1

dG(xk,1, v) +
∑

v∈Xk

dG(xk,1, v) +
∑

v∈Xi
k+1≤i≤2m+1

dG(xk,1, v) (1)

We divide the proof into three parts (A), (B) and (C). In (A), we find the

distances from xk,1 to all the vertices of
k−1⋃

i=1
Xi; in (B), we find the distances

from xk,1 to all the vertices of Xk; in (C), we find the distances from xk,1 to

all the vertices of
2m+1⋃

i=k+1

Xi.

(A): Here we find the sum of the distances from xk,1 to all the vertices of
k−1⋃

i=1
Xi. For this, first we compute

∑

v∈Xi

dG(xk,1, v), for a single layer Xi, 1 ≤

i ≤ k − 1.

∑

v∈Xi

dG(xk,1, v) = (k − i) + 2
{

(k − i) + . . . + (k − i)
︸ ︷︷ ︸

(k−i) times

+(k − i + 1) + (k − i + 2)

+ . . . + (n − 1) + n
}

(2)

Explanations for the terms appearing in (2) are as follows:
For 1 ≤ j ≤ i, dG(xk,1, xi,j) = k − i and the respective shortest paths are
similar to the one shown in Fig.2. The distances from xk,1 to the vertices
xi,i+1, xi,i+2, . . . , xi,n+1 are k − i + 1, k − i + 2, . . . , n, respectively, and the
corresponding shortest paths are similar to the one shown in Fig.3. The mul-
tiplication factor 2 appears in the sum of (2), except for one term, because
dG(xk,1, xi,j) = dG(xk,1, xi,2n−j+3), 2 ≤ j ≤ n + 1. Summing the terms of (2),
that is, the summing the distances from xk,1 to all the vertices of Xi gives,

∑

v∈Xi

dG(xk,1, v) = (k − i)2 + n(n + 1) (3)

Hence,

∑

v∈Xi
1≤i≤k−1

dG(xk,1, v) =
∑

1≤i≤k−1

{(k − i)2 + n(n + 1)}

=
k(k − 1)(2k − 1)

6
+ n(n + 1)(k − 1) (4)
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(B): Next we find the sum of the distances from u = xk,1 to all other vertices
of the single layer Xk.

∑

v=xk,j∈Xk

dG(xk,1, v) = 2
{
1 + 2 + . . . + n

}
(5)

Explanations for the terms appearing in (5) are described below:
dG(xk,1, xk,j) = j−1, j = 2, 3, 4, . . . , n+1. The multiplication factor 2 appears
in the Equation (5) because dG(xk,1, xk,j) = dG(xk,1, xk,2n−j+3), for 2 ≤ j ≤
n + 1. Hence

∑

v=xk,j∈Xk

dG(xk,1, v) = 2(1 + 2 + . . . + n)

= n(n + 1) (6)
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(C): Finally, we find the sum of the distances from u = xk,1 to all the vertices

of
2m+1⋃

i=k+1

Xi. For this, it is enough to replace k − i by i − k, in the argument

given in (A). Hence
∑

v∈Xi

dG(xk,1, v) = (i − k)2 + n(n + 1) (7)

Hence,
∑

v∈Xi

k+1≤i≤2m+1

dG(xk,1, v) =
∑

k+1≤i≤2m+1

{
(i − k)2 + n(n + 1)

}

=
{(2m − k + 1)(2m − k + 2)(4m − 2k + 3)

6

+n(n + 1)(2m − k + 1)
}

(8)

From (4), (6) and (8), we have

∑

v∈V (G)

dG(xk,1, v) =
k(k − 1)(2k − 1)

6
+

(2m − k + 1)(2m − k + 2)(4m − 2k + 3)

6

+n(n + 1)(k − 1) + n(n + 1) + n(n + 1)(2m − k + 1) (9)

Eqn (9) gives the sum of the distances from xk,1 to all other vertices of G.

Summing the equation (9) over k = 1, 2, . . . , 2m + 1, we get

2m+1∑

k=1

∑

v∈V (G)

dG(xk,1, v) =
2m+1∑

k=1

{k(k − 1)(2k − 1)

6
+ n(n + 1)(k − 1) + n(n + 1) +

(2m − k + 1)(2m − k + 2)(4m − 2k + 3)

6
+ n(n + 1)(2m − k + 1)

}

=
m

3
(m + 1)(2m + 1)2 + n(n + 1)(2m + 1)2

+
m

3
(2m + 1)(2m

2 + 3m + 1)

=
2m(2m + 1)(2m2 + 3m + 1)

3
+ n(n + 1)(2m + 1)2 (10)

As there is an automorphism of G which maps xk,1 to xk,j the sum of the
distances from xk,1 to all the vertices of G is same as the sum of the distances
from xk,j, 2 ≤ j ≤ 2n + 1, to all the vertices of G; consequently we have

∑

u,v∈V (G)

dG(u, v) = (2n + 1)
(

2m+1∑

k=1

∑

v∈V (G)

dG(xk,1, v)
)

= (2n + 1)
{2m(2m + 1)(2m2 + 3m + 1)

3
+ n(n + 1)(2m + 1)2

}
,

using equation (10)

=
(2m + 1)(2n + 1)

3

{
2m(2m

2 + 3m + 1) + 3n(n + 1)(2m + 1)
}

(11)
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Hence,

W (P2m+1 ⊠ C2n+1) =
1

2

( ∑

u,v∈V (G)

dG(u, v)
)

=
(2m + 1)(2n + 1)

6

{
2m(2m

2 + 3m + 1) + 3n(n + 1)(2m + 1)
}
,

using equation (11).

�

In the following theorem, we compute the Wiener index of the strong prod-
uct of an even length path and an odd cycle.

Theorem 4. The Wiener index of P2m⊠C2n+1 is
m2(2n+1)

3

{
(4m2−1)+6n(n+

1)
}
.

Proof. As in the proof of the previous theorem, we consider (A),(B) and (C).
(A) and (B) are the same as in Theorem 2.3 and hence, for (A) and (B) we
consider the sum as in the proof of the Theorem 2.3. Also, here in (C), the
summation varies from k+1 to 2m instead of k+1 to 2m+1 in eqn (8). Hence
we consider the sum corresponding to (C) of the Theorem 2.3. Therefore,

∑

v∈Xi

dG(xk,1, v) = (i − k)2 + n(n + 1) (12)

Hence,
∑

v∈Xi
k+1≤i≤2m

dG(xk,1, v) =
∑

k+1≤i≤2m

{
(i − k)2 + n(n + 1)

}

=
(2m − k)(2m − k + 1)(4m − 2k + 1)

6
+ n(n + 1)(2m − k)(13)

By the observation made at the beginning of the proof, we can use (4) and
(6) here and hence using (4), (6) and (13), we have

∑

v∈V (G)

dG(xk,1, v) =
k(k − 1)(2k − 1)

6
+ n(n + 1)(k − 1) + n(n + 1)

+
(2m − k)(2m − k + 1)(4m − 2k + 1)

6
+ n(n + 1)(2m − k)(14)

Summing the equation (14) over k = 1, 2, . . . , 2m, we get
2m∑

k=1

∑

v∈V (G)

dG(xk,1, v) =
2m∑

k=1

{k(k − 1)(2k − 1)

6
+

(2m − k)(2m − k + 1)(4m − 2k + 1)

6

}

+
2m∑

k=1

{
n(n + 1)(k − 1) + n(n + 1) + n(n + 1)(2m − k)

}

=
m2

3
(2m + 1)(2m − 1) +

m2

3
(2m + 1)(2m − 1) + 4m

2
n(n + 1)

=
2m2

3

{
(2m − 1)(2m + 1) + 6n(n + 1)

}
(15)
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As there is an automorphism of G which maps xk,1 to xk,j the sum of the
distances from xk,1 to all the vertices of G is same as the sum of the distances
from xk,j, 2 ≤ j ≤ 2n + 1, to all the vertices of G and hence we have

∑

u,v∈V (G)

dG(u, v) = (2n + 1)
(

2m∑

k=1

∑

v∈V (G)

dG(xk,1, v)
)

= (2n + 1)
{2m2

3

(
(2m − 1)(2m + 1) + 6n(n + 1)

)}
,

using equation (15)

=
2m2(2n + 1)

3

{
(2m − 1)(2m + 1) + 6n(n + 1)

}
(16)

Hence,

W (P2m ⊠ C2n+1) =
1

2

( ∑

u,v∈V (G)

dG(u, v)
)

=
m2(2n + 1)

3

{
(4m

2 − 1) + 6n(n + 1)
}
, using equation (15).

�

Theorem 5. The Wiener index of P2m ⊠ C2n is 2m2n
3

{
4m2 + 6n2 − 1

}
.

Proof. As in the proof of the previous theorem, we divide the proof of the
theorem into three parts (A), (B) and (C). In (A), we find the distances

from xk,1 to all the vertices of
k−1⋃

i=1
Xi; in (B), we find the distances from xk,1

to all the vertices of Xk; in (C), we find the distances from xk,1 to all the

vertices of
2m⋃

i=k+1

Xi.

(A): Initially we find the sum of the distances from xk,1 to all the ver-

tices of
k−1⋃

i=1
Xi. For this, first we compute

∑

v∈Xi

dG(xk,1, v), for a single layer

Xi, 1 ≤ i ≤ k − 1.

∑

v∈Xi

dG(xk,1, v) = (k − i) + 2
{

(k − i) + . . . + (k − i)
︸ ︷︷ ︸

(k−i) times

+(k − i + 1) + (k − i + 2)

+ . . . + (n − 1)
}

+ n (17)

Explanations for the terms appearing in (17) are as follows:
dG(xk,1, xi,j) = k − i, j = 1, 2, 3, . . . , i and the respective shortest paths are
similar to the one shown in Fig.2. The distances from xk,1 to the vertices
xi,i+1, xi,i+2, . . . , xi,n+1 are k − i + 1, k − i + 2, . . . , n, respectively, and the
corresponding shortest paths are similar to the one shown in Fig.3. The mul-
tiplication factor 2 appears in the sum (17), expect for two terms, because
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dG(xk,1, xi,j) = dG(xk,1, xi,2n−j+2), 2 ≤ j ≤ n. Summing the terms of (17),
that is, the summing the distances from xk,1 to all the vertices of Xi gives,

∑

v∈Xi

dG(xk,1, v) = (k − i)2 + n
2 (18)

Hence,
∑

v∈Xi
1≤i≤k−1

dG(xk,1, v) =
∑

1≤i≤k−1

{(k − i)2 + n
2}

=
k(k − 1)(2k − 1)

6
+ n

2(k − 1) (19)

(B): Next we find the sum of the distances from u = xk,1 to all other vertices
of Xk.

∑

v=xk,j∈Xk

dG(xk,1, v) = 2
{
1 + 2 + . . . + (n − 1)

}
+ n (20)

Explanations for the terms appearing in (20) are described below:
dG(xk,1, xk,j) = j − 1, j = 2, 3, . . . , n. The multiplication factor 2 appears in
the Equation (20) because dG(xk,1, xk,j) = dG(xk,1, xk,2n−j+2), 2 ≤ j ≤ n.

Further dG(xk,1, xk,n+1) = n. Hence
∑

v=xk,j∈Xk

dG(xk,1, v) = 2
(
1 + 2 + . . . + (n − 1)

)
+ n

= n2 (21)

(C): Finally, we find the sum of the distances from u = xk,1 to all the vertices

of
2m⋃

i=k+1

Xi. For this, it is enough to replace k − i by i − k, in the argument

given in (A). Hence
∑

v∈Xi

dG(xk,1, v) = (i − k)2 + n2 (22)

Hence,
∑

v∈Xi
k+1≤i≤2m

dG(xk,1, v) =
∑

k+1≤i≤2m

{
(i − k)2 + n

2
}

=
(2m − k)(2m − k + 1)(4m − 2k + 1)

6
+ n

2(2m − k) (23)

From (19), (21) and (23), we get,

∑

v∈V (G)

dG(xk,1, v) =
k(k − 1)(2k − 1)

6
+ n

2(k − 1) + n
2 + n

2(2m − k)

+
(2m − k)(2m − k + 1)(4m − 2k + 1)

6
(24)
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Summing the equation (24) over k = 1, 2, . . . , 2m, we have

2m∑

k=1

∑

v∈V (G)

dG(xk,1, v) =

2m∑

k=1

{k(k − 1)(2k − 1)

6
+ n

2(k − 1) + n
2 + n

2(2m − k)

+
(2m − k)(2m − k + 1)(4m − 2k + 1)

6

}

=
m2

3
(2m + 1)(2m − 1) + 4m

2
n

2 +
m2

3
(2m − 1)(2m + 1)

=
2m2(2m − 1)(2m + 1)

3
+ 4m

2
n

2 (25)

As there is an automorphism of G which maps xk,1 to xk,j the sum of the
distances from xk,1 to all the vertices of G is same as the sum of the distances
from xk,j, 2 ≤ j ≤ 2n, to all the vertices of G; consequently, we have

∑

u,v∈V (G)

dG(u, v) = 2n
(

2m∑

k=1

∑

v∈V (G)

dG(xk,1, v)
)

= 2n
{2m2(2m − 1)(2m + 1)

3
+ 4m

2
n

2
}
, by equation (25)

=
4m2n

3

{
4m

2 + 6n
2 − 1

}
(26)

Hence,

W (P2m ⊠ C2n) =
1

2

∑

u,v∈V (G)

dG(u, v)

=
2m2n

3

{
4m2 + 6n2 − 1

}
, by equation (26).

�

In the next theorem, we compute the Wiener index of the strong product
of an odd length path and an even cycle.

Theorem 6. The Wiener index of P2m+1 ⊠ C2n is
n(2m+1)

6

{
2m(2m2 + 3m +

1) + 3n2(2m + 1)
}
.

Proof. As in the proof of the previous theorem, we consider (A),(B) and
(C). (A) and (B) are the same as in Theorem 2.5 and hence, for (A) and
(B) we consider the sum as in the proof of Theorem 2.5. Also, here in (C),
the summation varies from k + 1 to 2m + 1 instead of k + 1 to 2m in eqn
(23). Hence we consider the sum corresponding to (C) of the above theorem.
Therefore,

∑

v∈Xi

dG(xk,1, v) = (i − k)2 + n2 (27)
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Hence,

∑

v∈Xi

k+1≤i≤2m+1

dG(xk,1, v) =
∑

k+1≤i≤2m+1

{
(i − k)2 + n(n + 1)

}

=
(2m − k + 1)(2m− k + 2)(4m − 2k + 3)

6

+n2(2m − k + 1) (28)

By the observation made at the beginning of the proof, we can use (19), (21)
here and hence using (19), (21) and (28), we have

∑

v∈V (G)

dG(xk,1, v) =
k(k − 1)(2k − 1)

6
+ n2(k − 1) + n2 + n2(2m − k + 1)

+
(2m − k + 1)(2m − k + 2)(4m − 2k + 3)

6
(29)

Summing the equation (29) over k = 1, 2, . . . , 2m + 1, we get

2m+1∑

k=1

∑

v∈V (G)

dG(xk,1, v) =

2m+1∑

k=1

{k(k − 1)(2k − 1)

6
+

(2m − k)(2m − k + 1)(4m − 2k + 1)

6

}

+

2m+1∑

k=1

{
n

2(k − 1) + n
2 + n

2(2m − k + 1)
}

=
m2

3
(2m + 1)(2m − 1) +

2m(2m + 1)(2m2 + 3m + 1)

3
+ n

2(2m + 1)2

=
2m(2m + 1)(2m2 + 3m + 1)

3
+ n

2(2m + 1)2 (30)

As there is an automorphism of G which maps xk,1 to xk,j the sum of the
distances from xk,1 to all the vertices of G is same as the sum of the distances
from xk,j, 2 ≤ j ≤ 2n, to all the vertices of G and hence we have

∑

u,v∈V (G)

dG(u, v) = 2n
(

2m+1∑

k=1

∑

v∈V (G)

dG(xk,1, v)
)

= 2n
{ 2m(2m + 1)(2m2 + 3m + 1)

3
+ n

2(2m + 1)2
}

(31)

Hence,

W (P2m+1 ⊠ C2n) =
1

2

( ∑

u,v∈V (G)

dG(u, v)
)

=
n(2m + 1)

6

{
2m(2m

2 + 3m + 1) + 3n
2(2m + 1)

}
.

�
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3. The Weiner Index of strong product of cycles

In this section, we find the Wiener index of strong product of two cycles.
A graph G is vertex transitive if for every pair u, v ∈ V (G) there is an auto-
morphism that maps u to v.

Theorem 7. The Wiener index of the graph C2m+1 ⊠ C2n+1 is
(2m+1)2(2n+1)

6{
m(m + 1) + 3n(n + 1)

}
.

Proof. As G = C2m+1 ⊠ C2n+1 is vertex transitive, it is enough to find the
distances from x1,1 to all other vertices of G. We compute the sum of the
distances from u = x1,1 to all other vertices of G.

∑

u,v∈V (G)

dG(u, v) =
∑

v∈X1

dG(u, v) + 2
( ∑

v∈Xi,2≤i≤m+1

dG(u, v)
)
, (32)

where Xi denotes the vertices of the ith layer of G, the multiplication factor
2 in one of the terms in (1) appears as the distances from u to all the vertices
of the layer Xi is same as the distances from u = x1,1 to all the vertices of
X2m−i+3, 2 ≤ i ≤ m + 1; this is true because the length of a shortest path
that descends to a vertex from u = x1,1 to a vertex of Xi, 2 ≤ i ≤ m + 1, is
same as the length of a shortest path that goes from x1,1 to a vertex of X2m+1

and then ascending to a vertex in X2m−i+3 are the same. We shall calculate
the sum of the terms of (32), separately.

(A): First we calculate the sum of the distances from u = x1,1 to all other
vertices of X1.

∑

v∈X1

dG(u, v) = 2
(
1 + 2 + . . . + n

)
(33)

since dG(u, x1,j) = j−1, for j = 2, 3, . . . , n+1, since the path traverses through
j rows with its origin and terminus at X1.

∑

v∈X1

dG(u, v) = n(n + 1) (34)

(B): Next we shall calculate the sum of the distances from u = x1,1 to the
vertices of Xi, 2 ≤ i ≤ m + 1. For this, we compute

∑

v∈Xi

dG(u, v), for the

single layer Xi.
∑

v∈Xi

dG(u, v) = (i − 1) + 2
{

(i − 1) + · · · + (i − 1)
︸ ︷︷ ︸

(i−1) times

+i + (i + 1) + (i + 2) + . . . + n
}

(35)

Explanations for the terms in (35) are as follows:
dG(u, xi,j) = i − 1, j = 1, 2, 3, . . . , i, see Fig.4. The distances from u to the
vertices xi,i+1, xi,i+2, xi,i+3, . . . , xi,n+1 are i, i + 1, i + 2, . . . , n, respectively, see
Fig.5. The multiplication factor 2 appears in all the terms except the first
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term of the sum (35) because dG(u, xi,j) = dG(u, xi,2n−j+3), 2 ≤ j ≤ n + 1,
due to the ”symmetry” of the graph.

x1,1

Y1 Y2 Y2n+1

X1

X2m+1

b

X2

Yj

b

Xi

x2,2
x3,3

xi,j

xi−1,j

xj,j

xj+1,j

b

b

xj+2,j

Fig.4 Vertices of Cr ⊠ Cs

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

Xm+1 b b b

b

The summation of the terms of (35) gives
∑

v∈Xi

dG(u, v) = (i − 1)2 + n(n + 1) (36)

Hence,
∑

2≤i≤m+1

dG(u, v) =
∑

2≤i≤m+1

{
(i − 1)2 + n(n + 1)

}

=
m(m + 1)(2m + 1)

6
+ mn(n + 1) (37)

b x1,1

Y1 Y2 Y2n+1

X1

X2m+1

b

X2

Yj

bb

X2m

Xi

b

b

b

b

x2,2

x3,3

xi,i

xi−1,i−1

xi,j

xi,j−1

xi,i+2

xi+1,i+1

xi,i+1

xi,j−2
b b b b b b

b

bb

Fig.5 Vertices of Cr ⊠ Cs

b b

b b

b

b b

b

b
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Substituting the values obtained in (34) and (37) in (32), we have
∑

u,v∈V (G)

dG(u, v) =
∑

v∈X1

dG(u, v) + 2
( ∑

v∈Xi, 2≤i≤m+1

dG(u, v)
)

= n(n + 1) + 2
{m(m + 1)(2m + 1)

6
+ mn(n + 1)

}

=
2m + 1

3

{
m(m + 1) + 3n(n + 1)

}
(38)

As the graph G is vertex transitive, the sum of the distances from u = x1,1

to all other vertices of G is same as the sum of the distances from xi,j to all
other vertices of G, for all i, j, 1 ≤ i ≤ 2m + 1, 1 ≤ j ≤ 2n + 1. Hence

W (G) =
|V (G)|

2

( ∑

u,v∈V (G)

dG(u, v)
)

=
(2m + 1)(2n + 1)

2

{2m + 1

3

(
m(m + 1) + 3n(n + 1)

)}

=
(2m + 1)2(2n + 1)

6

{
m(m + 1) + 3n(n + 1)

}
.

�

Theorem 8. The Wiener index of the graph C2m ⊠ C2n+1 is
m2(2n+1)

3

(
2m2 +

6n(n + 1) + 1
)
.

Proof. As in the proof of the previous theorem, we consider (A) and (B). (A)
is the same as in the previous theorem and hence, for (A) we consider the sum
as in the proof of the previous theorem. Also, in (B), the summation varies
from 2 to m instead of 2 to m + 1. Hence we consider the sum corresponding
to (B) of the above theorem. Therefore,

∑

2≤i≤m

dG(u, v) =
∑

2≤i≤m

(
(i − 1)2 + n(n + 1)

)

=
m(m − 1)(2m − 1)

6
+ (m − 1)n(n + 1) (39)

(C): we calculate the sum of the distances from u = x1,1 to all other vertices
of Xm+1.

∑

v∈Xm+1

dG(u, v) = m
2 + n(n + 1) (40)

From (3), (39) and (40), we have
∑

u,v∈V (G)

dG(u, v) =
∑

v∈X1

dG(u, v) + 2
( ∑

v∈Xi, 2≤i≤m

dG(u, v)
)

+
∑

v∈Xm+1

dG(u, v)

= n(n + 1) +
(m − 1)m(2m − 1)

6
+ (m − 1)n(n + 1) + m

2 + n(n + 1)

=
m

3

(
2m

2 + 1 + 6n(n + 1)
)

(41)

As the graph G is vertex transitive, the sum of the distances from u = x1,1

to all other vertices of G is same as the sum of the distances from xi,j to all
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other vertices of G, for all i, j, 1 ≤ i ≤ 2m, 1 ≤ j ≤ 2n + 1. Hence

W (G) =
|V (G)|

2

( ∑

u,v∈V (G)

dG(u, v)
)

=
2m(2n + 1)

2

{m

3

(
2m

2 + 1 + 6n(n + 1)
)}

=
m2(2n + 1)

3

{
2m

2 + 1 + 6n(n + 1)
}
.

�

The proof of the following theorem uses similar arguments as in Theorems
3.1 and 3.2 and hence it is left to the reader.

Theorem 9. W (C2m ⊠ C2n) = 2m2n
3 (2m2 + 6n2 + 1).
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[5] I. Gutman, S. Klavžar, B. Mohar (Eds.): Fiftieth anniversary of the Wiener index,

Discrete Appl. Math. 80(1997), 1-113.
[6] I. Gutman, O.E. Polansky: Mathematical concepts in organic chemistry, Springer-verlag,

Berlin 1986.
[7] I. Gutman, Y. Yeh: On the sum of all distances in composite graphs, Discrete Math.

135(1994),359-365.
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