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WEIGHT CHARACTERIZATION OF THE BOUNDEDNESS
FOR THE RIEMANN-LIOUVILLE DISCRETE

TRANSFORM

ALEXANDER MESKHI1,2, GHULAM MURTAZA3

Abstract. We establish necessary and sufficient conditions on a weight
sequence {vj}∞j=1 governing the boundedness for the Riemann-Liouville
discrete transform Iα from lp(N) to lqvj

(N) (trace inequality), where 0 <
α < 1. The derived conditions are of D. Adams or Maz’ya–Verbitsky
(pointwise) type.
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1. Introduction

Our aim in this paper is to characterize a weight sequence {vj}∞j=1 for
which the operator

{Iαβk}n =
n∑

k=1

βk

(n− k + 1)1−α
, n ∈ N,

maps boundedly from lp(N) to the weighted space lqvj (N), where 1 < p ≤
q < ∞ and 0 < α < 1. If p < q, then we derive necessary and sufficient
condition of D. Adams [1] type, while in the diagonal case p = q we establish
Maz’ya–Verbitsky [4] type criteria guaranteeing the trace inequality for Iα.
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Let 1 < p < ∞. Suppose that {vk}∞k=1 is a sequence of positive numbers
(weight sequence). Let lpvk(N) be the class of all sequences {βk}∞k=1 for which

‖βk‖lpvk
(N) :=

( ∞∑

k=1

|βk|pvk

)1/p

< ∞ .

If vk ≡ 1, then we denote lpvk(N) by lp(N).

Further, for an a.e. positive function (weight) v on R+ := (0,∞), we
denote by Lp

v(R+) the class of all measurable functions f on R+ for which

‖f‖Lp
v(R+) :=

( ˆ

R+

|f(x)|pv(x)dx

)1/p

< ∞.

If v ≡ 1, then we denote Lp
v(R+) by Lp(R+).

Continuous analog of the operator Iα is the Riemann–Liouvlle transform
defined on R+ given by the formula

Rαf(x) =
ˆ x

0

f(t)
(x− t)1−α

dt, 0 < α < 1.

The Lp → Lq
v characterization of Rα was studied in the papers [5], [3] (we

refer also [7] and the monograph [2], Ch.1). The statements derived by these
authors reed as follows:

Theorem A ([5], [7]). Let 1 < p ≤ q < ∞, 1/p < α < 1. Then the
following conditions are equivalent:

(i) Rα is bounded from Lp(R+) into Lq
v(R+) ;

(ii)

B ≡ sup
t>0

(ˆ ∞

t

v(x)
x(1−α)q

dx
)1/q

t1/p′ < ∞;

(iii)

B1 ≡ sup
k∈Z

(ˆ 2k+1

2k

v(x)dx
)1/q

2k(α−1/p)q < ∞.

For the case 0 < α < 1/p, there are known the following statements:

Theorem B ([3]). Let 1 < p < ∞ and let 0 < α < 1
p . Then the inequality

ˆ

R+

|Rαf(x)|pv(x)dx ≤ c0

ˆ

R+

|f(x)|pdx, f ∈ Lp(R+),

holds if and only if Wαv ∈ Lp′
loc(R+) and

Wα[Wαv]p
′
(x) ≤ cWαv(x) a.e.,

where

Wαg(t) =
ˆ ∞

t

g(τ)
(τ − t)1−α

dτ.
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Theorem C ([2], p. 131.) Let 1 < p < q < ∞, 0 < α < 1/p. Then the
following statements are equivalent:

(i) There exists a positive constant c such that for all f ∈ Lp(R+),

‖Rαf‖Lq
v(R+) ≤ c‖f‖Lp(R+);

(ii)
sup

0≤h≤a
(ν[a; a + h))1/qhα−1/p < ∞;

In the paper [3] the authors applied Theorem B to prove the existence of
a positive solution for certain non–linear Volterra integral equation.

In the discrete case the following statement holds (see [6], [7]):

Theorem D. Let 1 ≤ p ≤ q < ∞ and let 1/p < α < 1. Then the
following conditions are equivalent:

(i) The operator Iα is bounded from lp(N) to lqvj (N);

(ii)

sup
k∈N

( ∞∑

m=k

vm

m(1−α)q

)1/q

k1/p′ < ∞;

(iii)

sup
k∈Z+




2k+1∑

m=2k

vm




1/q

2k(αp−1) < ∞.

Our purpose in this paper is to derive the results similar to Theorems B
and C in the discrete case and to derive criteria on a weight sequence {vj}j

guaranteeing the boundedness of Iα from lp(N) to lqvk(N) in the case when
0 < α < 1/p. As we shall see in this case conditions on {vj}j∈N are different
to the criteria in Theorem D.

Throughout the paper the symbol N means the set of natural numbers;
Z+ := N∪{0}; p′ := p

p−1 , where 1 < p < ∞; R+ := [0,∞); the characteristic
sequence χ{i:a≤i≤b} (a and b are positive integers) is defined in the usual
way:

χ{i:a≤i≤b} =
{

1 a ≤ i ≤ b;
0 elsewhere.

The operator formal adjoint to I ′α is given by the formula:

{I ′αβk}n =
∞∑

k=n

βk

(k − n + 1)1−α
, n ∈ N.

Finally we point out that constants (often different constants in the same
series of inequalities) will generally be denoted by c.
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2. The main results

Now we formulate the main results of this paper.

Theorem 2.1. [Adams type characterization] Let 1 < p < q < ∞ and
0 < α < 1/p. Then Iα is bounded from lp(N) to lqvk(N) if and only if

B := sup
m,j∈N; j≤m

(
m+j∑

k=m

vk

)1/q

jα−1/p < ∞ .

Theorem 2.2. [Maz’ya–Verbitsky type characterization] Let 1 < p < ∞
and let 0 < α < 1/p. Then the inequality

∞∑

i=1

(
Iαgj

)p

i
vi ≤ c

∞∑

i=1

gp
i (1)

holds for all non-negative sequences {gi}i if and only if {I ′αvi}i < ∞ for all
i ∈ N and there is a positive constant c such that

{
I ′α[I ′αvj ]p

′}
i
≤ c

{
I ′αvj

}
i

(2)

for all i ∈ N.

3. Proof of the main results

Let (X,U , µ) and (Y,B, ν) be measure spaces with ν being σ- finite. Sup-
pose that k(x, y) is a non–negative real–valued U ×B– measurable function
and that

Kf(y) =
ˆ

X

k(x, y)f(x)dµ(x)

is the kernel operator.
Denote:

eλ(x) := {y ∈ Y : k(x, y) > λ}, eλ(y) := {x ∈ X : k(x, y) > λ},
where λ is a positive number;

Mr(µ)(y) := sup
λ>0

λrµ
(
eλ(y)

)
; Ms(ν)(x) := sup

λ>0
λsν

(
eλ(x)

)
,

where r and s are real numbers.

To prove Theorem 2.1 we use the following statement which is a corollary
of part (ii) of Theorem A in [1].

Theorem E. Suppose that 1 < p < q < ∞, s
q = r

p + 1− r, where r > 0.
If Mr(µ)(y) ≤ A < ∞ for all y ∈ Y ; Ms(ν)(x) ≤ B < ∞ for all x ∈ X,
then the operator K is bounded from Lp(X, µ) to Lq(Y, ν), where Lp(X, µ)
Lq(Y, ν) are Lebesgue spaces defined with respect to the measures µ and ν
respectively.
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Proof of Theorem 2.1. Sufficiency. Suppose that X = Y = N, µ is the
counting measure on N and that dν(n) = vndµ(n), where {vn}∞n=1 is the
weight sequence. In our case the kernel operator is given by

{Iα{gm}}n =
∞∑

m=1

k(m,n)gm, n ∈ N,

where
k(m, n) = χ{m∈N:1≤m≤n}(n−m + 1)α−1.

Let r = 1
1−α and let s

q = r
p + 1− r. That is s = q(α−1/p)

α−1 > 0. We have

sup
n∈N

Mr(µ)(n) = sup
λ≤1,n∈N

λrµ{m ∈ N : m ≤ n; (n−m + 1)α−1 > λ}

= sup
λ≥1,n∈N

λr(α−1)µ{m ∈ N : m ≤ n; n−m + 1 < λ}

≤ sup
k,n∈N

k−1
n∑

m=max{n−k,1}
1 ≤ c.

Further,

sup
m∈N

Ms(ν)(m) = sup
λ≤1,m∈N

λsν{n ∈ N : m ≤ n; (n−m + 1)α−1 > λ}

= sup
λ≥1,m∈N

λs(α−1)ν{n ∈ N : m ≤ n;n−m + 1 < λ}

≤ sup
k,m∈N

ks(α−1)
m+k∑
n=m

vn ≤ c sup
n≤j; n,j∈N

Sn,j ,

where

Sn,j := (j − n + 1)q(α−1/p)
j∑

m=n

vm.

Further, let m,n be positive integers satisfying the condition 1 ≤ m ≤ n.
Then there exists a non-negative integer k0 such that 2k0 ≤ n−m+1 ≤ 2k0+1.
Therefore by using the fact that 0 < α < 1/p, we obtain that

Sm,n =

(
n∑

k=m

vk

)
(n−m + 1)(α−1/p)q

≤
k0+2∑

l=1




m+2l∑

k=m+2l−1

vk


 (2k0+1)(α−1/p)q

≤
k0+2∑

l=1




m+2l∑

k=m+2l−1

vk


 2l(α−1/p)q2l(1/p−α)q(2k0+1)(α−1/p)q ≤ cBq.
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Necessity: Let

β(m,j) =
{

1 if m− j < k ≤ m;
0 otherwise,

where m, j are positive integers such that 1 ≤ j ≤ m. Then we have

( ∞∑

n=1

vn

(
n∑

k=1

(β(m,j))k

(n− k + 1)1−α

)q)1/q

≥



m+j∑
n=m

vn




m∑

k=m−j

1
(n− k + 1)1−α




q


1/q

≥ c

(
m+j∑
n=m

vn

)1/q

jα.

Therefore, by the boundedness of Iα we conclude that
(

m+j∑
n=m

vn

)1/q

jα−1/p ≤ c, 1 ≤ j ≤ m.

¤

To prove Theorem 2.2 we need to prove some auxiliary statements.

Proposition 3.1. Let 1 < p < ∞, and let 0 < α < 1/p. If Iα is bounded
from lp(N) to lpvi(N) then there exist a positive constant c such that

m+h∑

i=m

vi ≤ c h1−αp (3)

holds for all positive integers m and h.

Proof. First we suppose that h ≤ m. For the sequence g(m,h) = χ{k: m−h<k≤m}
we have



∞∑

i=1

vi

( i∑

j=1

(
g(m,h)

)
j

(i− j + 1)1−α

)p




1/p

≥



m+h∑

i=m

vi

( m∑

j=m−h+1

(i− j + 1)α−1
)p




1/p

≥ c
( m+h∑

i=m

vi

)1/p
hα.

Therefore, by the boundedness of Iα we get

( m+h∑

i=m

vi

)1/p
≤ ch1/p−α.

Hence (3) holds for all positive integers m and h satisfying h ≤ m. Now
let m < h. Then there exist a positive integer k such that 2k ≤ h ≤ 2k+1.
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Therefore taking into account the condition 0 < α < 1/p we obtain

m+h∑

i=m

vi ≤
k∑

i=1

( m+2i∑

j=m+2i−1

vj

)

=
k∑

i=1

[( m+2i∑

j=m+2i−1

vj

)
2i(1−αp)2i(αp−1)

]

≤ c
k∑

i=1

2i(1−αp) ≤ c 2k(1−αp) ≤ c h1−αp.

¤

Proof of necessity of Theorem 2.2. Let us first show that, from (1) it
follows that {I ′αvj}k < ∞ for all k ∈ N. By the duality arguments (1) is
equivalent to the inequality

∞∑

i=1

(
I ′αgj

)p′

i
≤ c

∞∑

i=1

gp′
i v1−p′

i . (4)

Let v
(1)
i = viχ{i: m≤i<m+2h} and v

(2)
i = viχ{i: 1≤i<m or i≥m+2h}, where m and

h are positive integers.
Note that for k ≥ m + 2h − 1 and m ≤ i ≤ m + h, we have k −m + 1 ≤
2(k − i + 1). Further, by using (3), we come to the estimates:

{I ′αv
(2)
j }i ≤

∞∑

k=m+2h−1

vk(k − i + 1)α−1

≤ c
∞∑

k=m+h

vk(k −m + 1)α−1

≤ c
∞∑

k=m+h

vk

( ∞∑

j=k−m+1

jα−2
)

= c
∞∑

j=h+1

jα−2
( j+m−1∑

k=m

vk

)

≤ c
∞∑

j=h+1

jα−2.j1−αp < ∞.

Therefore
(
I ′αv

(2)
j

)
i

< ∞. The fact that
(
I ′αv

(1)
j

)
i

< ∞ is obvious. Thus,(
I ′αvj

)
i
< ∞ for every i ∈ N because m and h are taken arbitrarily.

Now we prove that (1) yields (2). For this we need some lemmas.



Weight Characterization of the Boundedness for the Riemann-Liouville Discrete Transform 41

Lemma 3.2. Let 0 < α < 1. Then there are positive constants c
(1)
α and c

(2)
α

depending only on α such that for all m ∈ N the inequality

(I ′αβs)m ≤ c(1)
α

∞∑

j=1

jα−2
( m+j−1∑

k=m

βk

)
≤ c(2)

α (I ′αβs)m

holds, where βm ≥ 0.

Proof. The proof follows easily if we observe that there are positive constants
b
(1)
α and b

(2)
α independent of k and m such that

∞∑

j=k−m+1

jα−2 ≤ b(1)
α (k −m + 1)α−1 ≤ b(2)

α

∞∑

j=k−m+1

jα−2.

It remains to change the order of summation.
¤

Corollary 3.3. Let 0 < α < 1, βm ≥ 0. Then there are positive constants
c
(1)
α and c

(2)
α depending only on α such that for all m ∈ N the inequality

{
I ′α[I ′αβs]p

′}
m
≤ c(1)

α

∞∑

j=1

jα−2
( m+j−1∑

k=m

{I ′αβs}p′
k

)
≤ c(2)

α

{
I ′α[I ′αβs]p

′}
m

holds.

Let {v(1)
i } and {v(2)

i } be defined as above. Then by using (4) we have
that

m+h∑

i=m

(
I ′αv

(1)
j

)p′

i
≤ c

m+h∑

i=m

vi.

Thus, by Corollary 3.3 we conclude that

{
I ′α[I ′αv

(1)
k ]p

′}
i
≤ c

∞∑

j=1

jα−2
( i+2(j−1)∑

k=i

vk

)
≤ c

{
I ′αvs

}
i
.

For the estimate of
{

I ′α[I ′αv
(2)
k ]p

′
}

i
, we need some auxiliary statements.

Lemma 3.4. Let 0 < α < 1. Then there is a positive constant c such that
for all natural numbers m, k and j with m ≤ k ≤ m + j − 1, the inequality

{
I ′αv(2)

s

}
k
≤ c

∞∑

s=j

sα−2
( m+s−1∑

t=m

vt

)

holds, where v
(2)
s = vsχ{s: 1≤s<m or s≥m+2j}.

Proof. Using the arguments of the proof of Lemma 3.2 and the fact that
(
I ′αv(2)

s

)
k

=
∞∑

s=m+2j

vs(s− k + 1)α−1
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we have
(
I ′αv(2)

s

)
k
≤ c

∞∑

s=m+2j

vs(s−m + 1)α−1

≤ c
∞∑

s=m+2j

vs

∞∑

t=s−m+1

tα−2

≤ c

∞∑

t=j

tα−2
( m+t−1∑

s=m

vs

)
.

¤

Lemma 3.5. Let 0 < α < 1. Then there is a positive constant c such that

{
I ′α[I ′αv

(2)
i ]p

′}
m
≤ c

∞∑

t=1

tα−1
( ∞∑

s=t

sα−2
( m+s−1∑

j=m

vj

))p′

Proof. Using Lemma 3.4 in Corollary 3.3 we have that

{
I ′α[I ′αv

(2)
i ]p

′}
m

≤ c
∞∑

t=1

tα−2
( m+t−1∑

k=m

{I ′αvk}p′
)

≤ c
∞∑

t=1

tα−2
m+t−1∑

k=m

( ∞∑
s=t

sα−2
m+s−1∑

ε=m

vε

)p′

(the inner sum does not depend on k)

= c
∞∑

t=1

tα−2
( ∞∑

s=t

sα−2
m+s−1∑

ε=m

vε

)p′( m+t−1∑

k=m

1
)

= c

∞∑

t=1

tα−2
( ∞∑

s=t

sα−2
m+s−1∑

ε=m

vε

)p′
.

¤

Lemma 3.6. Let 0 < α < 1. Then there is a positive constant c such that

{
I ′α[I ′αv

(2)
i ]p

′}
m
≤ c

∞∑

t=1

tα
( ∞∑

s=t

sα−2
m+s+1∑

ε=m

vε

)p′−1(
tα−2

m+t+1∑

j=m

vj

)
.

Proof. We will deduce the discrete case to the continuous case. Let v(x) =
vj , j ≤ x < j + 1. Then

´ j+1
j v(x)dx = vj . Hence, by using lemmas proved

above, the Lebesgue differentiation theorem and integration by parts, we
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find that

{
I ′α[I ′αv

(2)
i ]p

′}
m

≤ c
∞∑

n=1

nα−1
( ∞∑

j=n

jα−2
( m+2j∑

k=m

vk

))p′

≤ c
∞∑

n=1

n+1ˆ

n

xα−1
( ∞∑

i=2n

i+1ˆ

i

yα−2
( m+y∑

k=m

vk

)
dy

)p′
dx

≤ c

∞̂

1

xα−1
( ∞̂

x

yα−2
( m+y∑

k=m

vk

)
dy

)p′
dx

= c
[xα

α

( ∞̂

x

· · ·
)p′∣∣∣

∞

1
+

∞̂

1

xα
( ∞̂

x

· · ·
)p′−1

xα−2
( m+x∑

k=m

vk

)
dx

]

= c
[
− 1

α

( ∞̂

1

· · ·
)p′

+

∞̂

1

xα
( ∞̂

x

· · ·
)p′−1

xα−2
( m+x∑

k=m

vk

)
dx

]

≤ c

∞̂

1

xα
( ∞̂

x

· · ·
)p′−1

xα−2
( m+x∑

k=m

vk

)
dx

= c

∞∑

n=1

n+1ˆ

n

xα
( ∞̂

x

· · ·
)p′−1

xα−2
( m+n+1∑

k=m

vk

)
dx

≤ c
∞∑

n=1

nα
( ∞̂

n

· · ·
)p′−1

nα−2
( m+n+1∑

k=m

vk

)

≤ c
∞∑

n=1

nα
( ∞∑

k=n

k+1ˆ

k

kα−2
( m+k+1∑

i=m

vi

)
dy

)p′−1
nα−2

( m+n+1∑

k=m

vk

)

= c
∞∑

n=1

nα
( ∞∑

k=n

kα−2
( m+k+1∑

i=m

vi

))p′−1
nα−2

( m+n+1∑

k=m

vk

)
.

¤

Now necessity of Theorem 2.2 follows easily because we know that the
trace inequality implies (see Proposition 3.1)

m+j∑

k=m

vk ≤ c j1−αp,
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where the positive constant c is independent of positive integers m and j.
Indeed, by using this inequality in Lemma 3.6 we have that

{
I ′α[I ′αv

(2)
j ]p

′}
m

≤ c

∞∑

n=1

nα
( ∞∑

k=n

kα−2(k + 2)1−αp
)p′−1(

nα−2
m+n+1∑

k=m

vk

)

≤ c
∞∑

n=1

nα−2
m+n+1∑

k=m

vk

≤ c
∞∑

n=1

(3n)α−2
m+n+1∑

k=m

vk

≤ c
∞∑

j=3

[3(j − 2)]α−2
m+j−1∑

k=m

vk

≤ c
∞∑

j=3

jα−2
m+j−1∑

k=m

vk

≤ c
{

I ′αvj

}
m

.

In the last inequality we used Lemma 3.2, in particular, the estimate from
below.

Necessity of Theorem 2.2 is proved.

Now we prove sufficiency of Theorem 2.2. We will need some auxiliary
statements.

Lemma 3.7. Let 1 < p < ∞ and 0 < α < 1. Then there exists a positive
constant c such that for all non-negative sequences {gi}i∈Z and all i ∈ N,
the following inequality holds

{Iαgk}p
i ≤ c{Iα[Iαgk]

p−1
j gm}i, (5)

Proof. First we assume that {Vαgj}i := {Iα[Iαgk]p−1gj}i and

{Vαgj}i ≤ {Iαgj}p
i ;
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otherwise (5) is obvious for c = 1. Now let us assume that 1 < p ≤ 2. Then
we have

{Iαgk}p
i =

i∑

k=1

(i− k + 1)α−1gk

( i∑

j=1

(i− j + 1)α−1gj

)p−1

≤
i∑

k=1

(i− k + 1)α−1gk

( k∑

j=1

(i− j + 1)α−1gj

)p−1

+
i∑

k=1

(i− k + 1)α−1gk

( i∑

j=k

(i− j + 1)α−1gj

)p−1

≡ I
(1)
i + I

(2)
i .

It is obvious that if j ≤ k ≤ i, then k − j + 1 ≤ i− j + 1. Consequently,

I
(1)
i ≤

i∑

k=1

(i− k + 1)α−1gk

( k∑

j=1

(k − j + 1)α−1gj

)p−1
= {Vαgk}i.

Now we use Hölder’s inequality with respect to the exponents 1
p−1 , 1

2−p and
measure dµ(k) = (i− k + 1)α−1gk dµc(k) (here µc is the counting measure).
We have

I
(2)
i ≤

( i∑

k=1

(i− k + 1)α−1gk

)2−p( i∑

k=1

( i∑

j=k

(i− j + 1)α−1gj

)
(i− k + 1)α−1gk

)p−1

= {Iαgk}2−p
i (Ji)p−1,

where

Ji ≡
i∑

k=1

( i∑

j=k

(i− j + 1)α−1gj

)
(i− k + 1)α−1gk.

Using Fubini’s theorem we find that

Ji =
i∑

j=1

(i− j + 1)α−1gj

( j∑

k=1

(i− k + 1)α−1gk

)
.

Further, it is obvious that the following estimates
j∑

k=1

(i− k + 1)α−1gk ≤
( j∑

k=1

(i− k + 1)α−1gk

)p−1{
Iαgk

}2−p

i

≤ {Iαgk}p−1
j {Iαgk}2−p

i

hold, where j ≤ i. Taking into account the last estimate, we obtain

Ji ≤
( i∑

j=1

(i− j + 1)α−1gj {Iαgk}p−1
j

){
Iαgk

}2−p

i

= {Vαgk}i{Iαgk}2−p
i .
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Thus,

I
(2)
i ≤ {Iαgki}2−p

i {Iαgk}(2−p)(p−1)
i {Vαgk}p−1

i

= {Iαgk}p(2−p)
i {Vαgk}p−1

i .

Combining the estimate for I(1) and I(2) we derive

{Iαgk}p
i ≤ {Vαgk}i + {Iαgk}p(2−p)

i {Vαgk}p−1
i .

As we have assumed that {Vαgk}i ≤ {Iαgk}p
i , we obtain

{Vαgk}i = {Vαgk}2−p
i {Vαgk}p−1

i ≤ {Vαgk}p−1
i {Iαgk}p(2−p)

i .

Hence

{Iαgk}p
i ≤ {Vαgk}p−1

i {Iαgk}p(2−p)
i + {Vαgk}p−1

i {Iαgk}p(2−p)
i

= 2{Vαgk}p−1
i {Iαgk}p(2−p)

i .

Applying the fact
(
Iαgj

)
i
< ∞ we find that

{Iαgk}p
i ≤ 2

1
p−1 {Vαgk}i.

Now we deal with the case p > 2. Let us assume again that

{Vαgj}i ≤ {Iαgj}p
i .

Since p > 2 we have

{Iαgk}p
i =

i∑

k=1

(i− k + 1)α−1gk

( i∑

j=1

(i− j + 1)α−1gj

)p−1

≤ 2p−1
i∑

k=1

(i− k + 1)α−1gk

( k∑

j=1

(i− j + 1)α−1gj

)p−1

+2p−1
i∑

k=1

(i− k + 1)α−1gk

( i∑

j=k

(i− j + 1)α−1gj

)p−1

=: 2p−1I
(1)
i + 2p−1I

(2)
i .

It is clear that if j ≤ k ≤ i, then (i− j + 1)α−1 ≤ (k − j + 1)α−1. Therefore
like the case 1 < p ≤ 2 we have that I

(1)
i ≤ {Vαgk}i.

Now we estimate I
(2)
i . We obtain

( i∑

j=k

(i− j + 1)α−1gj

)p−1
=

( i∑

j=k

(i− j + 1)α−1gj

)p−2( i∑

j=k

(i− j + 1)α−1gj

)

≤
{

Iαgj

}p−2

i

i∑

j=k

(i− j + 1)α−1gj .
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Using Fubini’s theorem and the last estimate we have

I
(2)
i ≤

{
Iαgj

}p−2

i

i∑

k=1

(i− k + 1)α−1gk

i∑

j=k

(i− j + 1)α−1gj

=
{

Iαgj

}p−2

i

i∑

j=1

(i− j + 1)α−1gj

j∑

k=1

(i− k + 1)α−1gk

≤
{

Iαgj

}p−2

i

i∑

j=1

(i− j + 1)α−1gj

j∑

k=1

(j − k + 1)α−1gk.

Due to Hölder’s inequality with respect to the exponents
{
p − 1, p−1

p−2

}
and

the measure dµ(j) = (i− j + 1)α−1gjdµc(j) (µc is the counting measure) we
derive

i∑

j=1

(i− j + 1)α−1gj

j∑

k=1

(j − k + 1)α−1gk ≤
( i∑

j=1

(i− j + 1)α−1gj

) p−2
p−1

×
( i∑

j=1

( j∑

k=1

(j − k + 1)α−1gk

)p−1

(i− j + 1)α−1gj

) 1
p−1

= {Iαgj}
p−2
p−1

i {Vαgj}
1

p−1

i .

Combining these estimates we obtain

{Iαgj}p
i ≤ 2p−1{Vαgj}i + 2p−1{Iαgji}

p(p−2)
p−1

i {Vαgj}
1

p−1

i .

By virtue of the inequality {Vαgi}i ≤ {Iαgj}p
i it follows that

{Vαgj}i = {Vαgj}
1

p−1

i {Vαgj}
p−2
p−1

i ≤ {Vαgj}
1

p−1

i {Iαgj}
p(p−2)

p−1

i .

Hence

{Iαgj}p
i ≤ 2p−1

(
{Vαgj}

1
p−1

i {Iαgj}
p(p−2)

p−1

i + {Vαgj}
1

p−1

i {Iαgj}
p(p−2)

p−1

i

)

= 2p{Vαgj}
1

p−1

i {Iαgj}
p(p−2)

p−1

i .

Further, from the last estimate we conclude that

{Iαgj}p
i ≤ 2p(p−1){Vαgj}i,

where 2 < p < ∞. ¤

Lemma 3.8. Let 1 < p < ∞, 0 < α < 1 and vi be a sequence of positive
numbers on N. Let there exist a constant c > 0 such that the inequality

‖Iα{gi}‖lp

v
(1)
i

(N) ≤ c1 ‖gi‖lp(N) , {v(1)
s }i = {I ′αvs}p′

i



48 Alexander Meskhi, Ghulam Murtaza

holds for all sequences gi ∈ lp(N). Then

‖Iα{gi}‖lpvi
(N) ≤ c2 ‖gi‖lp(N) , gi ∈ lp(N),

where c2 = c
1/p′
1 c1/p.

Proof. Let gi ≥ 0. Using Lemma 3.7, Fubini’s theorem and Hölder’s in-
equality we derive

∞∑

k=1

{Iαgs}p
kvk ≤ c

∞∑

k=1

k∑

i=1

{Iαgj}p−1
i gi(k − i + 1)α−1vk

= c
∞∑

i=1

{Iαgj}p−1
i gi{I ′αvj}i

≤ c
( ∞∑

i=1

gp
i

)1/p( ∞∑

i=1

{Iαgj}p
i v

(1)
i

)1/p′

= c ‖gi‖lp(N) ‖Iαgi‖p−1
lp

v
(1)
i

(N)

≤ cp−1
1 c ‖gi‖lp(N) ‖gi‖p−1

lp(N)

= cp−1
1 c ‖gi‖p

lp(N)

Hence,

‖Iαgj‖lpvi
(N) ≤ c

1/p′
1 c1/p ‖gj‖lp(N) .

¤

Lemma 3.9. Let 0 < α < 1 and 1 < p < ∞. Suppose that {I ′αvs}i < ∞
and {

I ′α[I ′αvs]p
′}

i
≤ c

{
I ′αvi

}
i

for all i ∈ N. Then we have

‖Iα{gi}‖lp

v
(1)
i

(N) ≤ c ‖gi‖lp(N) , gi ∈ lp(N), (6)

where {v(1)
s }i = {I ′αvs}p′

i .

Proof. Let gi ≥ 0 and let gi be supported on the set Em := {i : 1 ≤
i ≤ m}, where m is a natural number. Let t

(n)
i,j = χ{j:1≤j≤i}min{(i − j +

1)α−1, n}, n ∈ N. Then using Lemma 3.7 (which is true also for the kernel
t
(n)
i,j ), Fubini’s theorem and Hölder’s inequality we obtain the following chain
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of inequalities:
∞∑

i=1

( i∑

j=1

t
(n)
i,j gj

)p
v

(1)
i ≤ c

∞∑

i=1

( i∑

j=1

t
(n)
i,j

( j∑

k=1

t
(n)
j,k gk

)p−1
gj

)
v

(1)
i

≤ c
∞∑

j=1

gj

( j∑

k=1

t
(n)
j,k gk

)p−1( ∞∑

i=j

t
(n)
i,j v

(1)
i

)

≤ c ‖gi‖lp(N)

( m∑

j=1

( j∑

k=1

t
(n)
j,k gk

)p{
I ′α[I ′αvs]p

′}p′

j

)1/p′

≤ c ‖gi‖lp(N)

( m∑

j=1

( j∑

k=1

t
(n)
j,k gk

)p{
I ′αvs

}p′

j

)1/p′
.

Since
∑j

k=1 t
(n)
j,k gk < ∞ and {I ′αvs}j < ∞ for all j, therefore we have that

( ∞∑

i=1

( i∑

j=1

t
(n)
i,j gj

)p
v

(1)
i

)1/p
≤ c ‖gi‖lp(N) .

Passing now by m and n to +∞ we derive (6). ¤

Combining these lemmas we have also sufficiency of Theorem 2.2. Theo-
rem 2.2 is completely proved.
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