CONSTRUCTION OF MIDDLE NUCLEAR SQUARE LOOPS

AMIR KHAN¹, MUHAMMAD SHAH², ASIF ALI²

ABSTRACT. Middle nuclear square loops are loops satisfying x(y(zz)) = (xy)(zz) for all x, y and z. We construct an infinite family of nonassociative noncommutative middle nuclear square loops whose smallest member is of order 12.

Key words: middle nuclear square loop, construction of loop, C-loops. AMS SUBJECT: Primary 14H50, 14H20, 32S15.

1. Introduction

A groupoid (Q, \cdot) is a quasigroup if, for each $a, b \in Q$, the equations ax = b, ya = b have unique solutions where $x, y \in Q$ [1]. A loop is a quasigroup with an identity element e. The left nucleus of a loop L is $N_{\lambda} = \{l \in L : l(xy) = (lx)y \text{ for every } x, y \in L\}$. The right nucleus of a loop L is the set $N_{\rho} = \{r \in L : (xy)r = x(yr) \text{ for every } x, y \in L\}$, and middle nucleus of L is $N_{\theta} = \{m \in L : (ym)x = y(mx) \text{ for every } x, y \in L\}$. The nucleus of L is the set $N(L) = N_{\rho} \cap N_{\lambda} \cap N_{\theta}$. A loop (L, *) is termed a middle nuclear square loop if every square element, i.e., every element of the form x * x, is in the middle nucleus. In other words, the following identity is satisfied for all $x, y, z \in L$:

$$x * ((y * y) * z)) = (x * (y * y)) * z$$

Every C-loop is a middle nuclear square loop. In this paper we construct a middle nuclear square loop of order 12 which belongs to an infinite family of nonassociative noncommutative middle nuclear square loops constructed here for the first time.

¹Department of Mathematics and Statistics, University of Swat, Swat, Pakistan. Email: amir.maths@gmail.com,

²Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan. Email: shah-maths_problem@hotmail.com, Email: dr_asif_ali@hotmail.com.

2. Construction of middle nuclear square loop

Let H be a multiplicative group with identity element 1, and A be an additively abelian group with identity element 0. Any map

$$\theta: H \times H \to A$$

satisfying

$$\theta(1,g) = \theta(g,1) = 0$$
 for every $g \in H$

is called a factor set. When $\theta: H \times H \to A$ is a factor set, we can define a multiplication on $H \times A$ by

$$(g,a)(h,b) = (gh, a+b+\theta(g,h)).$$
 (1)

The resulting groupoid is clearly a loop with neutral element (1,0). It will be denoted by (H, A, θ) . Additional properties of (H, A, θ) can be enforced by additional requirements on θ .

Lemma. Let $\theta: H \times H \to A$ be a factor set. Then (H, A, θ) is a middle nuclear square loop if and only if

$$\theta(h^2, k) + \theta(g, h^2k) = \theta(g, h^2) + \theta(gh^2, k) \text{ for every } g, h, k \in H.$$
 (2)

Proof. By definition the loop (H, A, θ) is middle nuclear square loop if and only if

$$(g,a)[((h,b)(h,b))(k,c)] = [(g,a)((h,b)(h,b))](k,c)$$

$$\iff (g,a)[(h^2,2b+\theta(h,h))(k,c)] = [(g,a)(h^2,2b+\theta(h,h)](k,c)$$

$$\iff (g,a)[(h^2k,2b+c+\theta(h,h)+\theta\left(h^2,k\right)] = [(gh^2,a+2b+\theta(h,h)+\theta(g,h^2)](k,c)$$

$$\iff [g(h^2k),a+2b+c+\theta(h,h)+\theta\left(h^2,k\right)+\theta\left(g,h^2k\right)] =$$

$$[[(gh^2)k,a+2b+c+\theta(h,h)+\theta(g,h^2)+\theta(gh^2,k)]$$

comparing both sides we get

$$\theta(h^2, k) + \theta(g, h^2k) = \theta(g, h^2) + \theta(gh^2, k)$$

We call a factor set θ satisfying (2) a middle nuclear square factor set. \square

Proposition. Let A be an abelian group of order n where n > 2, and $\beta \in A$ an element of order bigger than 2. Let $H = \{1, x, x^2, x^3\}$ be a cyclic group with identity element 1. Define

$$\theta: H \times H \to A$$

by

$$\theta(a,b) = \beta, \text{ if } (a,b) = (x^3, x^2), (x^2, x^2)$$

$$= -\beta, \text{ if } (a,b) = (x^2, x), (x^3, x), (x^3, x^3), (x^2, x^3)$$

$$= 0, \text{ otherwise}$$

then $L = (H, A, \theta)$ is a nonassociative and noncommutative middle nuclear square loop with nucleus $N(L) = \{(1, a) : a \in A\}$.

Proof. The map θ is clearly a factor set. It can be shown as follows

To show that $L = (H, A, \theta)$ is middle nuclear square loop, we verify equation (2) as follows.

Case i: Since θ is a factor set there is nothing to prove when g, h, k = 1Case ii: when g = x, (2) becomes

$$\theta(h^{2}, k) + \theta(x, h^{2}k) = \theta(x, h^{2}) + \theta(xh^{2}, k)$$
put $h = x$ in (3) we get $\theta(x^{2}, k) + \theta(x, x^{2}k) = \theta(x, x^{2}) + \theta(x^{3}, k)$

$$k = 1 \Rightarrow \theta(x, x^{2}) = \theta(x, x^{2})$$

$$k = x \Rightarrow \theta(x^{2}, x) + \theta(x, x^{3}) = \theta(x, x^{2}) + \theta(x^{3}, x) \iff -\beta = -\beta$$

$$k = x^{2} \Rightarrow \theta(x^{2}, x^{2}) + \theta(x, 1) = \theta(x, x^{2}) + \theta(x^{3}, x^{2}) \iff \beta = \beta$$

$$k = x^{2} \Rightarrow \theta(x^{2}, x^{2}) + \theta(x, 1) = \theta(x, x^{2}) + \theta(x^{3}, x^{2}) \iff \beta = \beta$$

$$k = x^{2} \Rightarrow \theta(x^{2}, x^{2}) + \theta(x, 1) = \theta(x, x^{2}) + \theta(x^{3}, x^{2}) \iff \beta = \beta$$

$$k = x^{3} \Rightarrow \theta(x^{2}, x^{3}) + \theta(x, x) = \theta(x, x^{2}) + \theta(x^{3}, x^{3}) \iff -\beta = -\beta$$
Put $h = x^{2}$ in (3) we get $\theta(1, k) + \theta(x, k) = \theta(x, 1) + \theta(x, k)$

$$\Rightarrow \theta(x,k) = \theta(x,k)$$
put $h = x^3$ in (3) we get $\theta(x^2,k) + \theta(x,x^2k) = \theta(x,x^2) + \theta(x^3,k)$

$$k = 1 \Rightarrow \theta(x,x^2) = \theta(x,x^2)$$

$$k = x \Rightarrow \theta(x^2,x) + \theta(x,x^3) = \theta(x,x^2) + \theta(x^3,x) \iff \beta = \beta$$

$$k = x^2 \Rightarrow \theta(x^2,x^2) + \theta(x,1) = \theta(x,x^2) + \theta(x^3,x^2) \iff -\beta = -\beta$$

$$k = x^3 \Rightarrow \theta(x^2,x^3) + \theta(x,x) = \theta(x,x^2) + \theta(x^3,x^3) \iff \beta = \beta$$

Case iii: when $g = x^2$, (2) becomes

which all are true.

$$\theta(h^2, k) + \theta(x^2, h^2k) = \theta(x^2, h^2) + \theta(x^2h^2, k)$$
(4)

put
$$h = x$$
 in (4) we get $\theta\left(x^2, k\right) + \theta\left(x^2, x^2 k\right) = \theta\left(x^2, x^2\right) + \theta\left(1, k\right)$
 $k = 1 \Rightarrow \theta\left(x^2, x^2\right) = \theta\left(x^2, x^2\right)$
 $k = x \Rightarrow \theta\left(x^2, x\right) + \theta\left(x^2, x^3\right) = \theta\left(x^2, x^2\right) \iff \beta = \beta$
 $k = x^2 \Rightarrow \theta\left(x^2, x^2\right) + \theta\left(x^2, 1\right) = \theta\left(x^2, x^2\right) \iff -\beta = -\beta$
 $k = x^3 \Rightarrow \theta\left(x^2, x^3\right) + \theta\left(x^2, x\right) = \theta\left(x^2, x^2\right) \iff \beta = \beta$
put $h = x^2$ in (4) we get $\theta\left(1, k\right) + \theta\left(x^2, k\right) = \theta\left(x^2, 1\right) + \theta\left(x^2, k\right)$
 $\Rightarrow \theta\left(x^2, k\right) = \theta\left(x^2, k\right)$
put $h = x^3$ in (4) we get $\theta\left(x^2, k\right) + \theta\left(x^2, x^2 k\right) = \theta\left(x^2, x^2\right) + \theta\left(1, k\right)$
 $k = 1 \Rightarrow \theta\left(x^2, x^2\right) = \theta\left(x^2, x^2\right)$

$$k = x \Rightarrow \theta\left(x^{2}, x\right) + \theta\left(x^{2}, x^{3}\right) = \theta\left(x^{2}, x^{2}\right) \iff \beta = \beta$$

$$k = x^{2} \Rightarrow \theta\left(x^{2}, x^{2}\right) + \theta\left(x^{2}, 1\right) = \theta\left(x^{2}, x^{2}\right) \iff -\beta = -\beta$$

$$k = x^{3} \Rightarrow \theta\left(x^{2}, x^{3}\right) + \theta\left(x^{2}, x\right) = \theta\left(x^{2}, x^{2}\right) \iff \beta = \beta$$
which all are true.

Case iv: when $g = x^3$, (2) becomes

$$\theta(h^2, k) + \theta(x^3, h^2k) = \theta(x^3, h^2) + \theta(x^3h^2, k)$$
 (5)

put
$$h = x$$
 in (5) we get $\theta(x^{2}, k) + \theta(x^{3}, x^{2}k) = \theta(x^{3}, x^{2}) + \theta(x, k)$
 $k = 1 \Rightarrow \theta(x^{3}, x^{2}) = \theta(x^{3}, x^{2})$
 $k = x \Rightarrow \theta(x^{2}, x) + \theta(x^{3}, x^{3}) = \theta(x^{3}, x^{2}) + \theta(x, x) \iff \beta = \beta$
 $k = x^{2} \Rightarrow \theta(x^{2}, x^{2}) + \theta(x^{3}, 1) = \theta(x^{3}, x^{2}) + \theta(x, x^{2}) \iff -\beta = -\beta$
 $k = x^{3} \Rightarrow \theta(x^{2}, x^{3}) + \theta(x^{3}, x) = \theta(x^{3}, x^{2}) + \theta(x, x^{3}) \iff \beta = \beta$
put $h = x^{2}$ in (5) we get $\theta(1, k) + \theta(x^{3}, k) = \theta(x^{3}, 1) + \theta(x^{3}, k)$
 $\Rightarrow \theta(x^{3}, k) = \theta(x^{3}, k)$
put $h = x^{3}$ in (5) we get $\theta(x^{2}, k) + \theta(x^{3}, x^{2}k) = \theta(x^{3}, x^{2}) + \theta(x, k)$
 $k = 1 \Rightarrow \theta(x^{3}, x^{2}) = \theta(x^{3}, x^{2})$
 $k = x \Rightarrow \theta(x^{2}, x) + \theta(x^{3}, x^{3}) = \theta(x^{3}, x^{2}) + \theta(x, x) \iff \beta = \beta$
 $k = x^{2} \Rightarrow \theta(x^{2}, x^{2}) + \theta(x^{3}, 1) = \theta(x^{3}, x^{2}) + \theta(x, x^{2}) \iff -\beta = -\beta$
 $k = x^{3} \Rightarrow \theta(x^{2}, x^{3}) + \theta(x^{3}, x) = \theta(x^{3}, x^{2}) + \theta(x, x^{3}) \iff \beta = \beta$
which all are true.

Now we show that $L=(H,A,\theta)$ is not associative. For this consider $b\in A$, As $\left(x^3,b\right)\left((x,b)\left(x^3,b\right)\right)=\left(x^3,b\right)\left(1,2b\right)=\left(x^3,3b\right)\neq\left(x^3,3b-\beta\right)=\left(1,2b-\beta\right)(x^3,b)=\left((x^3,b)\left(x,b\right))(x^3,b)$ it follows that $L=(H,A,\theta)$ is nonassociative middle nuclear square loop.

Also L is not commutative because $(x^3, b)(x^2, b) = (x, b + \beta) \neq (x, b - \beta) = (x^2, b)(x^3, b)$.

Now it remains to show that $N(L) = \{(1, a) : a \in A\}$. For this consider

$$((g,b) (1,a)) (h,c) = (g,b) ((1,a) (h,c)) \iff (g,b+a+\theta (g,1)) (h,c) = (g,b) (h,a+c+\theta (1,h)) \iff (g,b+a+0) (h,c) = (g,b) (h,a+c+0) \iff (gh,b+a+c+\theta (g,h)) = (gh,a+b+c+\theta (g,h))$$

Which is true, so

$$(1,a) \in N_{\theta}(L)$$

Also

$$((1, a) (g, b)) (h, c) = (1, a) ((g, b) (h, c))$$

$$\iff (g, a + b + \theta (1, g)) (h, c) = (1, a) (gh, b + c + \theta (g, h))$$

$$\iff (g, a + b + 0) (h, c) = (1, a) (gh, b + c + 0)$$

$$\iff (gh, a + b + c + \theta (g, h)) = (gh, a + b + c + \theta (g, h))$$

$$\Rightarrow$$
 $(1, a) \in N_{\lambda}(L)$

Finally

$$((g,b)(h,c))(1,a) = (g,b)((h,c)(1,a))
\iff (gh,b+c+\theta(g,h))(1,a) = (g,b)(h,a+c+\theta(h,1))
\iff (gh,a+b+c+\theta(g,h)+\theta(gh,1)) = (g,b)(h,a+c+0)
\iff (gh,a+b+c+\theta(g,h)) = (gh,a+b+c+\theta(g,h))
\Rightarrow (1,a) \in N_a(L)$$

hence

$$(1,a)\in N\left(L\right)$$

$$\Rightarrow \{(1,a): a \in A\} \subset N(L) \tag{6}$$

Conversely:

Let
$$(k, a) \in N(L)$$
 where $a \in A$ so

$$\left(\left(g,b\right)\left(k,a\right)\right)\left(h,c\right)=\left(g,b\right)\left(\left(k,a\right)\left(h,c\right)\right)$$

$$\iff (gk, a + b + \theta(g, k))(h, c) = (g, b)(kh, a + c + \theta(k, h))$$

$$\iff ((gk)h, a + b + c + \theta(g, k) + \theta(gk, h)) =$$

$$(g(kh), a + b + c + \theta(k, h) + \theta(g, kh))$$

And this will be true only if k = 1, i.e $(k, a) \in \{(1, a) : a \in A\}$

$$\Rightarrow N(L) \subset \{(1,a) : a \in A\} \tag{7}$$

From (6) and (7) we get

$$N(L) = \{(1, a) : a \in A\}$$

Which is the required result.

Example. The smallest group A satisfying the assumptions of Proposition is the 3-element cyclic group $\{0,1,2\}$. Following the construction given in Proposition and taking $\beta = 2$, we get the following nonassociative noncommutative middle nuclear square loop of order 12.

	(1,0)	(1, 1)	(1, 2)	(x, 0)	(x, 1)	(x,2)
(1,0)	(1,0)	(1,1)	(1,2)	(x, 0)	(x, 1)	(x,2)
(1, 1)	(1,1)	(1, 2)	(1,0)	(x,1)	(x,2)	(x,0)
(1, 2)	(1,2)	(1,0)	(1, 1)	(x,2)	(x, 0)	(x,1)
(x,0)	(x,0)	(x,1)	(x,2)	$(x^2, 0)$	$(x^2, 1)$	$(x^2, 2)$
(x,1)	(x,1)	(x,2)	(x, 0)	$(x^2, 1)$	$(x^2, 2)$	$(x^2, 0)$
(x,2)	(x,2)	(x, 0)	(x, 1)	$(x^2, 2)$	$(x^2, 0)$	$(x^2, 1)$
$(x^2, 0)$	$(x^2,0)$	$(x^2, 1)$	$(x^2, 2)$	$(x^3, 1)$	$(x^3, 2)$	$(x^3, 0)$
$(x^2, 1)$	$(x^2,1)$	$(x^2, 2)$	$(x^2, 0)$	$(x^3, 2)$	$(x^3, 0)$	$(x^3, 1)$
$(x^2, 2)$	$(x^2, 2)$	$(x^2, 0)$	$(x^2, 1)$	$(x^3, 0)$	$(x^3, 1)$	$(x^3, 2)$
$(x^3,0)$	$(x^3,0)$	$(x^3, 1)$	$(x^3, 2)$	(1, 1)	(1, 2)	(1,0)
$(x^3, 1)$	$(x^3,1)$	$(x^3, 2)$	$(x^3,0)$	(1, 2)	(1,0)	(1, 1)
$(x^3, 2)$	$(x^3, 2)$	$(x^3, 0)$	$(x^3, 1)$	(1,0)	(1, 1)	(1, 2)

continued \cdots

	(1,0)	$(x^2, 1)$	$(x^2, 2)$	$(x^3, 0)$	$(x^3, 1)$	$(x^3, 2)$
(1,0)	$(x^2,0)$	$(x^2, 1)$	$(x^2, 2)$	$(x^3,0)$	$(x^3, 1)$	$(x^3, 2)$
(1, 1)	$(x^2,1)$	$(x^2, 2)$	$(x^2, 0)$	$(x^3, 1)$	$(x^3, 2)$	$(x^3, 0)$
(1, 2)	$(x^2, 2)$	$(x^2, 0)$	$(x^2, 1)$	$(x^3, 2)$	$(x^3, 0)$	$(x^3, 1)$
(x, 0)	$(x^3,0)$	$(x^3, 1)$	$(x^3, 2)$	(1,0)	(1, 1)	(1, 2)
(x,1)	$(x^3,1)$	$(x^3, 2)$	$(x^3, 0)$	(1, 1)	(1, 2)	(1,0)
(x,2)	$(x^3, 2)$	$(x^3, 0)$	$(x^3, 1)$	(1, 2)	(1,0)	(1, 1)
$(x^2, 0)$	(1, 2)	(1,0)	(1, 1)	(x,1)	(x,2)	(x,0)
$(x^2, 1)$	(1,0)	(1, 1)	(1, 2)	(x,2)	(x,0)	(x,1)
$(x^2, 2)$	(1,1)	(1, 2)	(1,0)	(x,0)	(x, 1)	(x,2)
$(x^3, 0)$	(x,2)	(x,0)	(x,1)	$(x^2, 1)$	$(x^2, 2)$	$(x^2, 0)$
$(x^3, 1)$	(x,0)	(x,1)	(x,2)	$(x^2, 2)$	$(x^2, 0)$	$(x^2, 1)$
$(x^3, 2)$	(x,1)	(x,2)	(x,0)	$(x^2, 0)$	$(x^2, 1)$	$(x^2, 2)$

•	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	2	3	4	5	6	7	8	9	10	11
1	1	2	0	4	5	3	7	8	6	10	11	9
2	2	0	1	5	3	4	8	6	7	11	9	10
3	3	4	5	6	7	8	9	10	11	0	1	2
4	4	5	3	7	8	6	10	11	9	1	2	0
5	5	3	4	8	6	7	11	9	10	2	0	1
6	6	7	8	10	11	9	2	0	1	4	5	3
7	7	8	6	11	9	10	0	1	2	5	3	4
8	8	6	7	9	10	11	1	2	0	3	4	5
9	9	10	11	1	2	0	5	3	4	7	8	6
10	10	11	9	2	0	1	3	4	5	8	6	7
11	11	9	10	0	1	2	4	5	3	6	7	8

We verified the above example with the help of GAP(Group Algorithm Program) package [4].

References

- R. H. Bruck, A Survey of Binary Systems, Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, Volume 20, Springer, 1958.
- [2] M. K. Kinyon, Kyle Pula and P. Vojtechovsky, *Admissible Orders Of Jordan Loops*, Journal of Combinatorial Designs 17 (2009), 2, 103–118.
- [3] K. McCrimmon, A Taste of Jordan Algebras, Universitext, Springer, 2004.
- [4] G. P. Nagy and P. Vojtechovsky, *LOOPS: Computing with quasigroups and loops in GAP*, version 1.0.0, computational package for GAP; http://www.math.du.edu/loops.
- [5] J. D. Philips and P. Vojtechovsky, C-loops: an introduction, Publicationes Mathematicae Debrecen 68 (2006), nos. 1-2, 115-137.
- [6] K.Pula, *Power of elements in Jordan loops*, Commentationes Mathematicae Universitatis Carolinae, to appear.
- [7] J. Slaney and A. Ali, *Generating loops with the inverse property*, Sutcliffe G., Colton S., Schulz S. (eds.); Proceedings of ESARM 2008, pp. 55-66.
- [8] J. Slaney.FINDER, finite domain enumerator: System description. In Proceedings of the twelfth Conference on Automated Deduction(CADE-12), pages 798-801,1994.
- [9] W. B. Vasantha Kandasamy, Smarandache Loops, American Research Press, Rehoboth, 2002.