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ELEMENTARY CALCULUS IN CHEVALLEY GROUPS OVER
RINGS

ALEXEI STEPANOV!2

ABSTRACT. The article studies structure theory of Chevalley groups over
commutative rings. Main results of the article are relative dilation and
local-global principles. and an economic set of generators of relative el-
ementary subgroup. These statements proved by computations with ele-
mentary unipotents (hence the title) are very important in further develop-
ment of the subject. No restrictions on the ground ring or the root system
® are imposed except that the rank of ® is not less than 2. The results
improve previous results in the area. The article contains a brief survey
of the subject, some gaps in proofs or incorrect references are discussed.
Proofs of some known related results are substantially simplified.
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INTRODUCTION

The article is to show which computations are really necessary to build up
structure theory of Chevalley groups over rings. We prove important technical
statements including generators of relative elementary subgroup, dilation prin-
ciple (clearing denominators), and Suslin’s local-global principle. The proof of
relative dilation principle is a little bit more carefull than in [5]. This allows
us to remove unnecessary assumptions on invertibility of structure constants.
Theorem 3.4 is a common generalization of the results of L. Vaserstein [35],
W. van der Kallen [18], and H. Apte, P.Chattopadhyay, and R.Rao [4] on
generators of the relative elementary subgroup. The article contains a survey
of previous results on the subject.

The relative dilation principle is extremely important for such applications
as multiple commutator formulas and nilpotent structure of relative K 1G . This
is shown in author’s recent work [27] without further computations with in-
dividual elements of Chevalley groups. Using methods of the current article
and [27] we plan to obtain similar results for quasi-split groups defined by con-
gruences, e. g. general unitary groups or congruence subgroups corresponding
to admissible pairs in the sense of E.Abe and K.Suzuki [3]. Theorem 3.4
seems to be an important tool for stabilization and prestabilization results for
lower K-functors modeled on Chevalley groups.

By elementary computations we mean computations in the Steinberg group
of a Chevalley group. In other words, elementary computations use only the
Chevalley commutator formula. There are (at least) two more questions in the
theory of Chevalley groups over rings that require elementary computations.
First is a proof that elementary subgroup is perfect and similar results. Second
are level computations, i.e. finding the largest subgroup generated by root
unipotents inside a given normal subgroup. This kind of computations was
carried out in the paper [25] of M. Stein and were further developed in [3, 2, 16].
Since we cannot improve this kind of elementary computations, we do not
touch them in the current article.

The first section contains preliminary results on properties of root systems.
All other sections contain results mentioned above with detailed and simplified
proofs followed by a survey. We also discuss gaps in the proofs in related
articles. This is done to avoid copying mistakes in future research. Some of the
results have been already published, some of them several times, but we believe
that our simplified proofs will be useful for further developments. Proofs of
published statements are given only in case they differ from the published ones.
Everything is proved without any assumptions of invertibility of structure
constants. The only blanket assumption of the current article is that the root
system has rank at least 2. In the survey parts we also mention results on
isotropic reductive group as they are direct generalization of Chevalley groups.
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But we do not comment the proofs of this results as technically they are much
more difficult.

In sections 2 and 3 the functor E can be replaced by the Steinberg group
functor St(®,_). The only place where we use the inclusion £ — G is Corol-
lary 2.2. But the proof of this statement can be extracted directly from the
proof of Lemma 2.1 without a reference to the inclusion.

Notation. All rings in the article are assumed to be commutative with unity
and all ring homomorphisms preserve the unity. For an ideal a of a ring R
by a™ we denote the ideal in R, generated by all products ry...r,,, where
T1,...,7m € a. In a sequel we need to distinguish between a™ and o™, that
denotes the ideal generated by ™ for all » € a. The reduction homomorphism
R — R/a is denoted by py.

For a multiplicative subset S of A we denote by S™!'A the localization of A
at S. The localization homomorphism A — S~!A is denoted by Ag. In the
current article we mostly use two kinds of localizations.

e Principal localizations, where S = {s, s?,...} for some element s € A.
Principal localization at S is denoted by Ag and the corresponding
localization homomorphism by Ag.

e Localizations at a maximal ideal. This means that S = A\ m for some
maximal ideal m of A. In this case localization is denoted by Ay, and
the localization homomorphism by Ay.

Let G be an algebraic group and ¢ : R — R’ a ring homomorphism. By
abuse of notation the induced group homomorphism G(¢) : G(R) — G(R') is
usually denoted by ¢. This cannot lead to a confusion as one can distinguish
between different meanings of ¢ by the type of its argument.

Let F and H be subgroups of an abstract group G. We follow standard
group-theoretical notation.

e If a,b € G, then [a,b] = a~'b~lab denotes their commutator whereas
a® = b~ ab stands for the conjugate to a by b.

e FH denotes the normal closure of F' by H, i.e. the smallest subgroup,
containing F' and normalized by H. It is generated by all elements f",
feF, he H.

e [F, H] is the mixed commutator subgroup, i.e. the subgroup generated
by commutators [a,b] for all @ € F and b € H.

Throughout the article ® denotes a reduced irreducible root system of rank
greater than 1. By W = W(®) we denote the Weyl group of ®. Let G =
Gp(®,_) denote a Chevalley-Demazure group scheme with a root system ®
and a weight lattice P and FE its elementary subgroup functor. We usually
suppress the weight lattice from the notation as it makes no difference in the
current considerations.
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Denote by @, (resp. ®5) the set of all long (resp. short) roots in ® (if ® is
simply laced, all roots are called long). Clearly, ®, is a subsystem whereas ®
is not a closed subset of roots.

A proper closed subset A C @ is called parabolic if A U (—A) = &. In this
case A = AUY, where A = —A is the symmetric (reductive) part of A whereas
Y is its special part, i.e. AN (—=A) = @. It is well known that A contains
the set of positive roots ®* for a unique ordering on ® and that ¥ C &7 is
generated by a set of simple roots. It easy to see that ¥ is an ideal in A, i.e.
PN(E+A)CE.

Fix an ordering on ® and let II be the set of simple roots. By ht « = hty «
we denote the height of a root a € ®T with respect to II. By convection
ht(—a) = hta. For roots o € Il and § € ® we write m () to denote the
coefficient at « in decomposition of 3 as a linear combination of simple roots.
Sometimes we need to include the ordering on @ to this notation. In this case
we write m2 (3) instead of mq (), where ¥ is a set of positive roots.

From the very beginning we fix a split maximal torus 7" of G. All root
subgroups and parabolic subgroups are assumed to correspond to this torus.
Note that we do not fix an ordering on the root system. Thus, different par-
abolic subgroup may contain different Borel subgroups. Throughout the text
all parabolic subgroups are assumed to be proper. For a parabolic subgroup
P we denote by Lp (resp. Up) the Levi subgroup (resp. unipotent radical) of
P. The opposite parabolic subgroup is denoted by P~ and U, = Up-. The
elementary subgroup of Lp is denoted by ELp.

If an ordering on @ is chosen and « is a simple root, then by P, we denote the
maximal parabolic subgroups corresponding to the subsystem IT\ {a}, i.e. the
parabolic subgroup, containing all root subgroups Xz with mq(3) > 0. The
Levi subgroup (unipotent radical) of P, is denoted by L, (resp. U,). Put
P, =P_,and U, = U_,. Clearly, X3 < Lo iff mq8 = 0 and X < U, iff
meaB > 0.

1. SOME PROPERTIES OF ROOT SYSTEMS

Before developing important technical tools we obtain some simple proper-
ties of root systems. Let @ be a reduced irreducible root system.

Lemma 1.1. Let V' be a real vector space spanned by an irreducible root system
®. Then @ is not contained in the union of two proper subspaces of V.

Proof. Suppose in contrary that there exist Vi, Vo < V such that ® C V3 U V5.
Put &, = &N Vj and 3 = &\ ®;. Let U; be the span of ®; (i = 1,2). Then
® C UUUs. Since @ is irreducible, Uy [ Us. It follows that there exists 8 € &
that is not orthogonal to Us. Hence, wg(Us) # Us. Since ®, spans Us, there
exists o € ®o such that wg(a) ¢ Us. Therefore, wg(a) = a — 2%2\;35 e U
and o € U;. But this contradicts the choice of ®. O
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Lemma 1.2. Given a # 3 € ® there exists an ordering on ® such that o €
and B € &~.

Proof. A hyperplane, orthogonal to an internal vector of the fundamental
chamber, separates positive and negative roots. The space spanned by ® is
divided in a union of the Weyl chambers. Therefore, any hyperplane that does
not contain roots separate positive and negative roots for some choice of an
ordering on ®. Thus, it suffices to take an appropriate hyperplane separating
two given roots. O

Lemma 1.3. Suppose that ® # Ai. Fix an ordering on ® and let ' be a
proper subset of ®, containing all positive roots. Then there exists a €  \ T’
and a parabolic set A of roots (possibly with respect to another ordering) such
that o belongs to its symmetric part whereas its special part is contained in I'.

Proof. For B € ® denote by sg € W the reflection through the hyperplane
orthogonal to 3. Recall that if 8 is a simple root, then sg(®*) = @+ \ {} U
{=B} [10, ch.VI, § 6, Corollary 1 of Proposition 17].

Denote by C' the fundamental chamber. Let v € ® \ I". There exists a
chamber C’ such that —v is a simple root with respect C’. We claim that
there exists a sequence of roots 1, ..., B, satisfying the following properties.

— Let wy, = Hle sg,. The root i1 is a simple root with respect to the
chamber wy(C'), where k =0,...,n — 1.
—wy(C)=C".
Indeed, the reflection sg, ., is a reflection through an arbitrary wall of the
chamber wy(C). Clearly, by a sequence of such reflections we can move one
given chamber to another.

Put 8,41 = —y. Then —f,41 ¢ I'. Let j be the smallest number such
that —fj41 ¢ I'. Using the remark above one shows by induction on i that
Bi(wi—1(®T)) CT for all i < j. In particular ¥ = w;(®*) CT. Let 8 # Bj11
be a simple root with respect to the chamber w;(C) (here we employ the
condition ® # A;). Take a = —fj41 and A = {0 € @ | m%é > 0}. Clearly
m%a = 0, hence a belongs to the symmetric part of A. On the other hand,
the special part of A lies in X C I' as required. O

2. SPAN OF UNIPOTENT RADICALS OF OPPOSITE PARABOLIC SUBGROUPS

Next statement is the only place of the article where we use the classification
of root systems.

Lemma 2.1. Let P be a parabolic subgroup and a, b ideals of a ring R. Let ¢ =
aZb+2ab+ab2 if & = ), and ¢ = ab otherwise. Then E(c) < (Up(a), Up(b)).
In any case, if a = R, then ¢ = b.
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Proof. Put H = (Up(a),Up(b)). We must show that z(r) € H for all r € ¢
anda € ®. Let A={8€®| Xg<Lp}and ¥ = {8 € ®| Xg < Up}, so that
® is the disjoint union of —3, ¥, and A. There is nothing to prove if a € +3.

Let « € A. If & # (), then ®; is an irreducible subsystem of the same
rank as ®. The span of subsystem A is a proper subspace in the span of
P as well as a-. By Lemma 1.1, &, is not contained in the union of these
subspaces, i.e. there exists a long root § € £% such that (8 |a) > 0. Then,
v=a—p € ®, sothat « = f+ . On the other hand, 5 — v ¢ @, otherwise
|B£~| < |B|, i.e. the length of the median is not less than the lengths of both
adjacent sides, that is impossible. This shows that the structure constant of
the corresponding simple Lie algebra cg , = %1, therefore Ng 11 = cg = %1
(see [11]). Without loss of generality we may assume that § € 3. Since A
normalizes £% (i.e. ® N (A £X) = +3), we have 7 € —3. By Chevalley
commutator formula we obtain

[25(£p), 2+(1)] = a(pr) H 561',3'_5_]4(]\75,,12‘0-]92'7"7‘)7

where the product is taken over all ¢, j > 0 such that i4+j > 2 and i3+ jvy € .
If p € a and r € b, then the left-hand side of the above formula belongs to
H. Since @ is reduced, i + jy ¢ ® for i = j > 1. Therefore, i + jy =
ia+ (7 —i)y € £%. It follows that each factor of the product belongs to H,
hence z,(pr) € H.

It remains to consider the case ® = (). By Lemma 1.1 there exists § € ®
outside (A) U at. As well as in the previous paragraph we may assume that
(Bla) >0and g € ¥. Put v = a — € —% and take arbitrary p € a and
r € b. If both 8 and « are short, then the angle between them is 7/3 and
zo(pr) = [rg(£p), z(r)] € H. If B is long, then we can argue as in the previous
paragraph to get x,(pr) € H. In the remaining case a € &, and € &, they
generate subsystem of type Cy. Then z(2pr) = [z5(£p), z(r)] € H. Clearly,
B —~ € ¥ is a long root. Therefore, zo(pr?) = [z5_~(£p), x4 (r)]|xg(£pr) € H
and similarly z,(p?r) € H. O

Corollary 2.2. With the notation of the previous lemma we have
E(c) < [Up(a),Up (b)]Up(ab)Up (ab).

Proof. Clearly, for subgroups K, L of a group H we have (K, L) = [K, L|K L.
By the lemma any element of ¢ € E(c) can be written as ¢ = [a, V']ab for some
a,a’ € Up(a) and b,b" € Uy (b). Since [G(R,a),G(R,b)] < G(R,ab) (see [38]
for the case G = GL,, and [5] or [27] for the general case) and ¢ C ab, we have
ab € G(R,ab). It follows that pap(a)pas(b) = 1, hence pgp(a) = pap(b) = 1 as
Up NUp is trivial. This means that a € Up(R) N G(R,ab) = Up(ab) and,
similarly, b € U (ab). O



Elementary Calculus in Chevalley Groups over Rings 85

Elementary calculations similar to the proof of Lemma 2.1 was developed
in all articles cited below. One of the first source of elementary calculus in
Chevalley groups over rings is paper [25] by M. Stein. However, Stein com-
putations have different goals — level computation and perfectness of the ele-
mentary subgroup. In some sense they are more precise than computations in
Lemma 2.1. In particular, there are more exceptional cases there: root sys-
tems Cs and G over a ring, having a residue field of 2 elements. Perfectness
of the elementary subgroup of an isotropic reductive group was obtained by
A.Luzgarev and A. Stavrova in [21] under natural assumptions.

Recently, there were new developments in elementary calculus due to R.
Hazrat, N. Vavilov, Zhang Zuhong, and the author [15, 26, 14, 16, 17]. In
particular, in HVZrelachev the authors proved the inclusion

E(R, ab) < [E(R, a), E(R, b)].

In our terminology this means that [F(R,a), E(R,b)] = EE(R,a,b) (see sec-
tion 4 for the definition of EE). A new exception occurs in this result: ® = Cj,
if 2 is not invertible in R.

3. GENERATORS OF RELATIVE ELEMENTARY SUBGROUP

Let a be an ideal of R. Put z,(p,7) = x4(p)*~={"). For ¥ C ® denote by
H*(a) the group generated by F(a) and all z4(p, ), where o ranges over %,
p€a,and r € R. Put H(a) = H®(a). If an ordering on ® is chosen, then we
denote Ht(a) = H® (a).

In this section we prove that H>(a) = E(R, a) provided that 3 is the special
part of a parabolic set of roots. The following lemma is a preparation for this
result.

Lemma 3.1.

(i) If B# —a € ®, then x4(p)®#") € E(a) for allp € a, and r € R.
(ii) ELp(R) normalizes Up(a) and Uy (a).

(ii) E(a)®> ™) < H*(a) for ally € ®~ and r € R.

(iv) Let ¥ be the special part of a parabolic set of roots. The group H*(a) is

normalized by Xo(R) for all« € —%. In particular, U~ (R) normalizes
H*(a).

Proof. The first assertion follows easily from Chevalley commutator formula
and immediately implies items (ii) and (iii).

Let p € a and r,s € R. To prove item (iv) it suffices to show that the
conjugate to each generator of H>(a) by z4(s) lies in H*(a) for all 8 € —X.
For generators x,(p) of E(a) the statement follows from (i).

Let « € 3, p € a, r,s € R, and n the height of the maximal root. We
prove by induction on n — ht 3 that z,(p, 7)*8() = z,(p)®-="2s6) ¢ H>(a).
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Note that it is nothing to prove if 8 = —a. Otherwise, z_(r)zg(s) =
z5(s)x—a(r) [1, 4(ry), where for each factor of the product hty > ht 8 and
ry € R. If § is the maximal negative root (base of induction), then the product
is empty, otherwise, by induction hypothesis the product normalizes H*(a).
In both cases it suffices to show that z,(p)*#(9)*-=(") ¢ H*(a), where § # —a.
But this follows immediately from items (i) and (ii). O

The next statement is weaker than the main result of this subsection but it
is a step towards the proof of the latter.

Proposition 3.2 (Vaserstein [35]). The relative elementary group E(R,a) is
generated by zo(p,r) for alla € @, p € a, and r € R.

Proof. With the notation given at the beginning of this subsection we must
prove that E(R,a) = H(a). Obviously, E(a) < H(a) < E(R,a). Therefore it
suffices to show that H(a) is normal in E(R), i.e. zq(p,r)%#) € H(a) for all
a,B€ P, pcaandr,se R If 8+# «,then by Lemma 1.2 there exists an
ordering of ® such that a € ® and 8 € ®~. In this case the result follows
from item (iv) of the previous lemma.

If B = «, choose a system of simple roots Il containing «. Since rank ® > 1,
there exists v € ¢ distinct from a. By Corollary 2.2

2o (p) € [Uy(a), Uy (R)|Uy(a)U; (a)

Since v # «a € 1I, we have _(r)zo(s) € EL,(R), hence it normalizes
subgroups U$(a) and Uvi(R). Therefore, z,(p,7)*8) = z4(p)*-oals) ¢
[Uy(a),U; (R)|Uy(a)U; (a) < [H(a), U™ (R)]E(a). Finally, item (iv) of the
previous lemma shows that the latter group is contained in H+(a) < H(a). O

The elementary subgroup E(a) usually is strictly smaller than the (normal)
relative elementary subgroup E(R,a). The next statement shows that it still
contains some relative elementary subgroup.

Corollary 3.3 (Vaserstein [35]). If ® # O}, then E(R,a?) < E(a), otherwise,
E(R,ad?) < E(a).

Proof. Let ¢ = a if ® # C; and ¢ = aa otherwise. By Proposition 3.2 it
suffices to show that z,(p)®() € E(a) for all a € ®, p € ¢, and r € R.
Choose a system II of simple roots, containing «, and let o # 8 € II. Then
X_a(R) < ELg(R). By Lemma 2.1 z4(p) € (Ug(a), Uy (a)). By Lemma 3.1(ii)
T—a(r) normalizes both Ug(a) and Uy (a), which implies the result. O
Theorem 3.4. Let ¥ be the special part of a parabolic set of roots. The

relative elementary group E(R,a) is generated by E(a) and zo(p,r) for all
a€eX, pea,andr €R.
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Proof. We have to prove that E(R,a) = H*(a). The idea of the proof is due
to W. van der Kallen [18, Lemma 2.2]. Let ¥ be a parabolic set of roots and €2
its special part. First, we show that HY(a) = H(a). It suffices to prove that
2a(p,r) € H%(a) for all p € a, r € R, and a € A, where A is the symmetric
part of U. Let P be a parabolic subgroup, corresponding to ¥ (i.e. Xg < P
iff 3 € ¥). Note that the unipotent radical Up is generated by Xz, were 8
ranges over (2. By Corollary 2.2 z,(p) € [Up(a),Up(R)|Up(a),Up(a). By
item (ii) of the previous lemma x_,(r) normalizes subgroups Up(a), Up (a),
and Up (R). Therefore,

Za(p,7) = za(p)" ") € [Up(a), Up (R) E(a),

and the latter group is contained in H*}(a) by item (iv) of the previous lemma.

Let A be the set of all & € ® such that H{%}(a) < H*(a). In other words,
A is the largest subset of ® such that H*(a) < H*(a). Clearly ¥ C A and by
the first paragraph of the proof A contains a parabolic set of roots. Choose
an ordering on ® such that ®+ C A. Suppose that A is a proper subset. By
Lemma 1.3 there exists a root o ¢ A and a parabolic subset I' such that « lies
in the symmetric part of I whereas the special part ¥ of I" is contained in A.
Now it follows from the first paragraph of the proof that H{*}(a) < H> (a).
Since by assumption H> (a) < H>(a), we have H{*}(a) € H>(a), i.e. a € A.
The contradiction shows that A = ® that means that H*>(a) = H(a). Finally,
by the previous proposition we have E(R, a) = H>(a). O

The following statement was shown in [18] to be useful for stabilization
results.

Corollary 3.5. Let P be a parabolic subgroup of G. Then
(E(a),Up(R))[)G(R,a) = E(R,q).

Corollary 3.3 was stated for all Chevalley groups (without a proof) by J. Tits
in 1976 in [32]. Note that it is a direct implication of Proposition 3.2 but this
one was not mentioned in [32]. In the same year a proof of this theorem for
GL,, modulo Proposition 3.2 due to L. Vaserstein was published in [36]. It is
really amazing that generators of relative elementary subgroup were not even
mentioned in [36] although W. van der Kallen in [18] and N. Vavilov in [37]
cite Proposition 3.2 as “mentioned” or obtained in [36].

Five years later L. Vaserstein included statements and proofs of Proposi-
tion 3.2 and Corollary 3.3 for the general linear group over a noncommutative
ring to his paper [34]. For all Chevalley groups the statements with detailed
proofs appeared in [35]. Method of the proof of Proposition 3.2 in this article
was suggested by a referee. Actually, the idea of the referee translated to the
language of parabolic subgroups was a starting point of our method. A coun-
terpart of Proposition 3.2 for the relative elementary subgroup, corresponding
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to an admissible pair, was obtained by E. Abe in [2]. A natural generating set
of the group [E(R,a), E(R,b)] was found in HVZrelachev. Corollary 3.5 for
G = GL,, and P = P; was obtained in [18, Lemma 2.2] (by P; we denote the
maximal parabolic subgroup, corresponding to the first simple root in nota-
tion of [10]. For classical group and P = P; this corollary was stated in [4,
Lemma 3.6] as an important step of the proof of relative local-global principle.
The proof of this statement was extremely short:

“The proof goes on the similar lines as in the linear case. Replacing e;; by
gei; works.”

with a reference to van der Kallen’s proof in [18] (here e;; are root unipotents
of GL,, whereas ge;; are those of a classical group).

4. SPLITTING PRINCIPLE

We call a a splitting ideal if A = R @ a as additive groups, where R is a
subring of A. Of course, in this case R = A/a. Equivalently, a is a splitting
ideal iff it is a kernel of a retraction A — R C A. For example, if A = R[t] is
a polynomial ring, then tA is a splitting ideal. For ideals a and b of a ring R
denote

EE(R,a,b) = E(A,ab)[E(A,a)E(A,b)].
This group appears naturally in the following theorem and in the multi-
commutator formula in [27]. In this article it will be used in section 7 for
the proof of relative local-global principle and it also plays an important role
in

The proof of the following statement is quite easy. It can be found in [5,
Lemma 2.2].

Theorem 4.1. Suppose that a is a splitting ideal of A so that A= R @& a for
some subring R of A. Let b’ be an ideal of R. Put b = Ab’. Then

E(A,6)NG(A,a) = EE(R,a,b).
In particular, if b = A, then E(A) N G(A4,a) = E(A, a).

It seems that the idea to use splitting in the theory of linear groups over rings
is due to A. A. Suslin. However, in his work [28] he uses another consequence of
splitting: GL,,(R)NE,,(A) = E,(R), where R is a retraction of a ring A. This
formula does not depend on two functors from an arbitrary category to the
category of sets. The absolute splitting principle E(R,a) = E(R)NG(R, mfa)
for a splitting ideal a of R appeared first in [1, Proposition 1.6]. It was reproved
in [4] with a more difficult proof. Recently it was generalized for isotropic
reductive groups by V.Petrov and A.Stavrova in [22]. The relative version
presented in the current article will appear in the joint paper [5] by H. Apte
and the author.
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5. DILATION AND LOCAL-GLOBAL PRINCIPLES

The following statement is a key technical point in localization procedure.
First we state the lemma which helps to get around non-injectivity of a local-
ization homomorphism.

Lemma 5.1. Let H be an algebraic group scheme. Let S be a multiplicative
subset in R and g(t),h(t) € H(R[t],tR[t]). If As(g) = As(h). Then there
exists s € S such that g(s™t) = h(s™t).

The proof is fairly easy. It can be found in [28], [22, Lemma 14], or [5].

Theorem 5.2. Let S be a multiplicative subset of R and g = g(t) € E(Rg|t],
tRgs[t]). Then there exists s € S such that g(st) € Ag(E(R[t], tR[t])).

Proof. Let u be another independent variable and R’ = Rg[t,u]. Put f(t,u) =
g(tu). Then f(t,u) € E(R,uR') and f(t,u?) € E(R,(uR)E < E(uR') by
Corollary 3.3. Replacing u by a suitable element s; € S we can clear denomi-
nators, i.e. g(ts3) = f(t,s3) = Ag(h) for some b’ € E(R[t]). Put s = s3.

By the splitting principle i’ = h”h, where b’ € E(R) and h € E(R]t],tR][t]).
Now, Ag(h") = g(st)As(h™!) € E(Rs[t],tRs[t]). On the other hand, Ag(h") €
E(Rg). Since the intersection G(Rglt],tRs[t]) N G(Rg) is trivial, Ag(h”) =1
and g(st) = Ag(h). O

Corollary 5.3. Let S be a multiplicative subset of R and g = g(t) € G(R][t],
tR[t]). Suppose that A\s(g) € E(Rs[t]). Then there exists s € S such that
g(st) € B(R[t), tR]1).

Proof. By Theorem 4.1 Ag(g) € E(Rglt],tRs[t]) and by the previous theo-
rem there exists s; € S such that Ag(g(s1t)) = Ag(h(t)) for some h(t) €
E(R][t],tR[t]). By the lemma of the current subsection there exists so € S
such that g(s1s2t) = h(sat) € E(R[t],tR]t]). O

Theorem 5.4. Let R be a commutative ring and g = g(y) € G(Rly], yR[y]).
Suppose that Ap\m(g) € E(Ruly]) for every mazimal ideal m of R. Then,

g € E(R[y],yR[y]).

Proof. Let t denote another independent variable. Consider the element

h(y.t) = g()g(y —yt)~' € G(Rly,t)).

Since h(y,0) = 1, we have h(y,t) € G(R[y,t],tR]y,t]). Evaluation homo-
morphism y — y — yt commutes with a localization homomorphism, hence
ArR\m(h(y,t)) € E(Ruly,t]) for every maximal ideal m of R. By Corollary 5.3
there exists s € R\ m such that h(y,ts) € E(R[y,t]). Therefore, the set
I ={s € R| h(y,ts) € E(R[y,t]) in not contained in any maximal ideal m
of R. We claim that I is an ideal of R. Indeed, if s,s’ € I, then h(y,trs)
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and h(y — yts,ts’) belong to E(R[y,t]) for all r € R. Thus, rs € I and
h(y,t(s+ ")) = h(y,ts)h(y — yts, ts') € E(R[y,t]), i.e. s+ € R.

Since [ is an ideal that is not contained in a maximal ideal, it coincides with
R. Hence, 1 € I, i.e. h(y,t) € E(R[y,t]) and g(y) = g(y)g(0)~ = h(y,1) €
E(R[y]). Finally, by the splitting principle g € E(R[y], yR[y])- O

Local-global principle for Ky was obtained by D. Quillen in [23] for the proof
of Serre’s problem. A version of this principle for K; was proved by A. Suslin.
It was an important step in his proof of Kj-anlogue of Serre’s problem. For
orthogonal groups Suslin’s local-global principle was obtained by V. Kopeiko
and A. Suslin in [30]. For symplectic groups it was announced by V. Kopeiko
in [20]. A proof appeared later in the paper [12] by F. Grunewald, J. Mennicke,
and L. Vaserstein.

The dilation principle seems to be a necessary tool for the proof of Suslin’s
local-global principle. It was named “Quillen’s lemma”, “Q-axiom” or “clear-
ing denominators”. The expression “dilation principle” is due to R. Rao. The
history of the dilation principle coincides with the history of the local-global
principle described above except for the result of D. Quillen.

For Chevalley groups both principles were obtained by E.Abe in [1] un-
der additional condition (P), although it is missed in the statement of [1,
Lemma 1.11] (this lemma is the same as our dilation principle 5.1). Indeed,
in the proof of Lemma 1.11 E. Abe claims without any explanation that the
image of the matrix

(D6 e Qe

under the homomorphism ¢, : SLo(As[t]) — G(Ast]) lies in A (E(A[t]))
when n is large enough. Here A is an arbirary commutative ring, s € A,
p,r € Aslt], @ € ® and ¢, is a homomorphism induced by inclusion of root
systems A; = {£a} < ®. This claim is a direct consequence of Condition (P).
If « lies in a subsystem of type As, then it follows from the Whitehead—
Vaserstein lemma. But it seems that this assertion is still unknown for & = Cs,
® = (o, long root o € (j, or short root « € B;. It worth mentioning that
normality of the elementary subgroup does not help to prove the claim or
condition (P).

An incorrect reference to [1, Lemma 1.11] was already given by M. Wendt
n [39]. He cites [1, Lemma 1.11] for the proof of [39, Proposition 4.1] Then,
for the proof of [39, Proposition 4.4] M. Wendt writes about [1, Lemma 3.7]:

“Note that although this result appears in Section 3 of [Abe83] where a property
(P’) is assumed, it does not depend on this property, and is in fact a direct
consequence of 4.1 which holds for arbitrary Chevalley groups.”
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But as we have just seen, [1, Lemma 1.11] already uses condition (P) (con-
dition (P’) is the same as (P) for localizations of a given ring). Note that
this is only incorrect reference but not a gap in the proof in [39] as the dila-
tion principle as well as the local-global principle is proved by V. Petrov and
A. Stavrova in [22] for all isotropic reductive groups without extra conditions.

There is one more gap in the proof of homotopy invariance of K& in [39],
which again is filled by A. Stavrova in her recent preprint [24], where she proves
the homotopy invariance for isotropic reductive groups. Namely, in the proof
of [39, Proposition 4.7] M. Wendt claims:

“...the space of mazximal ideals of (R[t1,...,tn])m[tnt+1] is noetherian of di-
mension 1...7
, where R is a Dedekind ring and m is a maximal ideal of R[ty,...,t,]. But in

fact it is easy to see that even if R is a field, dimension of maximal spectrum
equals n+1. It is noticed by H. Bass in [9, Part I, Proposition 3.13] that Bass—
Serre dimension of R[t1,...,ty])m[tn+1] is not greater than n (see [6] and [13]
for the definition and properties of Bass—Serre dimension). But this result do
not help to repair the proof of M. Wendt.

6. BAK’S KEY LEMMA AND NORMALITY OF THE ELEMENTARY SUBGROUP

Lemma 6.1. Let R be a ring and S a multiplicative subset in R. Given
g € E(Rg) and s € S there exists s € S such that

As(E(R,sR))? < As(E(R,s'R)).

Proof. Over the polynomial ring Rg[t] consider the element x,(t)? € E(Rg|t],
tRg[t]), where a € ®. By dilation principle there exists s(a) € S such that
za(s(a)t)? € Ag(E(R[t],tR[t])). Let s = s'[],cq s(a). Sending ¢ to s/s(a),
from the above inclusion we get z4(s)9 € Ag(E(R,s'R)) for all a € ®, which
implies the result. U

Theorem 6.2. E(R) is normal in G(R).

Proof. For a € ® and g € G(R) consider the element h(t) = z,(t)Y € G(R][t].
If m is a maximal ideal of R, then Ayn(g) = da for some d € T(Ry) and
a € E(Ry,). Since the torus normalizes the elementary group, we have A R\m €
E(Rw[t]). By Theorem 5.4 h(t) € E(R[t]). Sending t to an arbitrary element
r € R we get x,(r)?, which implies the result. O

Bak’s key lemma was obtained for all Chevalley groups by G. Taddei in [31]
as a main lemma for normality of the elementary subgroup. For the general
linear group over a quasi-finite ring the result was proved by A.Bak in [6] (a
quasi-finite ring is a direct limit of rings finitely generated as modules over
their centers). In the latter work it was entitled “Key Lemma” and was a key
point of the proof of nilpotency of SK;(R) over a Noetherian ring R of finite
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Bass—Serre dimension (the latter is closed to the notion of dimension of the
maximal spectrum).

Normality of the elementary subgroup in the general linear group was proved
by A.Suslin in [28] in 1977. His proof is based on the Suslin lemma about
solution of a linear equation over a commutative ring with unimodular row of
coefficients.

Afterwards, the results was generalized by different methods to certain
classes of noncommutative rings by A. Suslin [33], L. Vaserstein [34], A. Bak [6]
and S.Khlebutin [19]. Normality of the elementary subgroup of classical
groups was obtained in a series of works by A. Suslin and V. Kopeiko [30, 29]
and in [7, 8]. A general result about normality of the elementary subgroup in
all Chevalley groups was obtained by G. Taddei in [31]. Recently V. Petrov and
A. Stavrova [22] proved normality of the elementary subgroups in an isotropic
reductive group of local isotropic rank at least 2.

7. RELATIVE DILATION AND LOCAL-GLOBAL PRINCIPLES

In this section b is an ideal of a ring R and ¢ is an independent variable.
Put b[t] = bR[t]. Denote by E(tR][t],tb[t]) the normal closure of E(tb[t]) in
E(tR][t]).

Lemma 7.1. [E(R[t],b[t]), E(R[t],t*" R[t])] < E(tR[t],tb[t]).

Proof. [E(R]t],b[t]), E(R[t],t*" R[t])] < [E(b[t]), E(R[t], > R[t])]"F) and the
latter group is contained in [E(b[t]), E(t°R[t])]PEH) by Corollary 3.3. We
claim that the latter group is contained in E(R[t],#3b[t]). Recall that if
h,q1,...,9m are elements of a group H, then [h,g1...gm] = [[iny[h, 9]’
for some f1,..., fm € H. Therefore it suffices to show that [x4(p), zs(t9r)] €
E(R[t], t3b]t]) for all a, 3 € ®, p € b[t], and 7 € RJ[t].

If  # — 3, then Chevalley commutator formula shows that [z4(p), z5(t%r)] €
E(t?0[t]). If « = — B, choose a parabolic subgroup P such that X, € FLp as in
the proof of Corollary 3.3. By Lemma 2.1 z5(t%r) € (Up(£*R[t]), Up (£ R[t])),
in particular, z(t%r) is a product of root elements x(t3s) with v # —a.
Again, each commutator [z,(p),z~(t3s)] belongs to E(t3b[t]), hence [z4(p),
z5(t°r)] € E(R[t], t306[t]).

By Proposition 3.2 the group E(R[t],#3b[t]) is generated by z,(pt3,r) for
all « € ®, p € b[t], and r € R[t]. Take a parabolic subgroup P such that
Xo < ELp. By Corollary 2.2

za(pt’) € [Up(tb[t), Up (tRIE)]UP(t0[t]) Up (tbt])

and by Lemma 3.1(ii) x_,(r) normalizes all the subgroups from the above
inclusion. Thus, E(R[t],#3b[t]) < E(tR][t],tb[t]) which completes the proof.
O
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Theorem 7.2. Let S be a multiplicative subset of R and b an ideal. Let
g = g(t) € E(Rg|[t],bRg][t]) be such that g(0) = 0. Then there exists s € S
such that g(st) € As(E(R[t], b[t]) ).

The proof is essentially the same as for Theorem 5.2.

Theorem 7.3. Let b be an ideal of a ring R and a € G(R]t],tR][t]). Sup-
pose that Am(a) € E(Rw[t],bRn[t]) for any mazimal ideal m of R. Then
a € EE(R]t], b[t], tR[t]).

Proof. Let u denote another independent variable. Put
h(t,u) = a(t)a(t — tu) ™' € G(R]t,u]).

Since h(t,0) = e, we have h(t,u) € G(R[t,u],uR[t,u]). The evaluation ho-
momorphism t — t — tu commutes with a localization homomorphism, hence
Am(h(t,u)) € E(Rult, u], bRu[t, u]) for any maximal ideal m of R. By dilation
principle 5.3 there exists s € R\ m such that h(t,us) € E(R][t,u],b[t,u]). It
follows that the set s = {s € R | h(t,us) € E(R[t,u]) is not contained in a
maximal ideal m of R. We claim that s is an ideal of R. Indeed, if s,s’ € s,
then h(t,urs), and h(t — tus,us’) belong to E(R[t,u],b[t,u]) for all » € R.
Thus rs € s and

h(t,u(s+s")) = h(t,us)h(t — tus,us’) € E(R[t,u], bR[t, u]),

ie. s+ €s.

Since the ideal s is not contained in a maximal ideal of R, it must co-
incide With R. Thererfore 1 € s, i.e. h(t,u) € E(R[t,u]) and a(t) =
a(t)a(0)~! = h(t,1) € E(R[t],b[t]). Finally, by splitting principle 4.1 a €
EE(R[t), blt], tR[t)). O

The relative version of the local-global principle for classical groups ap-
peared in [4] by H. Apte, P. Chattopadhyay, R. Rao, but their proof is incom-
plete (see section 3). A complete proof of the relative case for all Cheval-
ley groups was obtained in [5] by H. Apte and the author provided that for
® = (5, Gy the ground ring does not have residue fields of two elements.

The author is grateful to Aleksey Anan’evskii, Anthony Bak, Ravi Rao,
Anastasia Stavrova, Nikolai Vavilov, and Matthias Wendt for help and useful
discussions.
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