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WIENER INDEX OF THE TENSOR PRODUCT OF CYCLES

K. PATTABIRAMAN1

Abstract. The Wiener index, denoted by W (G), of a connected graph
G is the sum of all pairwise distances of vertices of the graph, that is,
W (G) = 1

2

∑

u,v∈V (G)

d(u, v). In this paper, we obtain the Wiener index of

the tensor product of two cycles.
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1. Introduction

For two graphs G and H their tensor product, denoted by G×H, has vertex
set V (G) × V (H) in which (g1, ℎ1) and (g2, ℎ2) are adjacent whenever g1g2is
an edge in G and ℎ1ℎ2is an edge in H. The Cartesian product of two graphs
G and H is the graph, denoted by G □ H, whose vertex set is V (G □ H) =
V (G)×V (H) and (g1, ℎ1) is adjacent to (g2, ℎ2) in G □ H if and only if g1 = g2
and ℎ1ℎ2 ∈ E(H) or g1g2 ∈ E(G) and ℎ1 = ℎ2.

Let G andH be simple graphs with vertex sets V (G) = {x1, x2, . . . , xm} and
V (H) = {y1, y2, . . . , yn} , respectively. Then V (G×H) = V (G)×V (H) and for
our convenience, we write V (G×H) =

∪m
i=1Xi, where Xi = {xi}×V (H); we

may also write V (G×H) =
∪n

j=1 Yj , where Yj = V (G)×{yj} . We shall denote

the vertices of Xi by {xi,j ∣1 ≤ j ≤ n} and the vertices of Yj by {xi,j ∣1 ≤ i ≤
m}, where xi,j stands for the vertex (xi, yj). We shall call Xi, 1 ≤ i ≤ m, the

itℎ layer of G×H and Yj , 1 ≤ j ≤ n, the jtℎ column of G×H; see Fig.1. For
two disjoint subsets A and B of V (G), E(A,B) denotes the set of edges of G
from A to B. Let Cr denote a cycle of length r. Let V (Cr) = {x1, x2, . . . , xr}
and V (Cs) = {y1, y2, . . . , ys} . For terms not defined here see [3] or [12].
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Fig.1 Tensor Product of C3 and C4

The Wiener index of a graph G, W (G), is defined as 1
2

∑

u,v∈V (G)

d(u, v), where

d is the distance function on G. The Wiener index has important applica-
tions in chemistry. The graphical invariant W (G) has been studied by many
researchers under different names such as distance, transmissions, total sta-
tus and sum of all distances; see [5, 10, 13, 14]. The chemist Harold Wiener
was the first to point out in 1947 that W (G) is well correlated with certain
physico-chemical properties of the organic compound.

Besides applications in chemistry, there are many situations in communi-
cation, facility location, cryptology, etc., that are effectively modeled by a
connected graph G satisfying certain restrictions. Because of cost restraints
one is often interested in finding a spanning tree of G that is optimal with
respect to one or more properties. Finding a spanning tree T of G that has
minimum Wiener index is proved to be important, see [11].

The tensor product of graphs has been extensively studied in relation to
the areas such as graph colorings, graph recognition and decomposition, graph
embeddings, matching theory, see [1, 7, 12, 15]. Also it is related to design
theory, see [2]. Du and Zhou [8] have obtained the minimum Wiener indices
of trees and unicyclic graphs of given matching number. Further, the same
authors also have obtained the Wiener indices of unicyclic graphs [9]. Very
recently Balakrishnan et al. have given a sharp lower bound for the Wiener
index of the arbitary graph G in terms of the order, size and diameter of G
[6]. In [16], the Wiener index of the tensor product of a path and a cycle has
been obtained. In this paper, we compute the exact Wiener index of Cr ×Cs,

where r or s (or both) are odd. Since if G and H are connected graphs, then
G ×H is connected only if atleast one of the graph is nonbipartite, see [12].
Hence the graph Cr × Cs is disconnected, when r and s are both even. The
notation d(x, S) denotes the sum of the distances from x to all the vertices of
S, that is, d(x, S) =

∑

y∈S

d(x, y).
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2. The Weiner Index of C2m+1 × C2n+1.

We quote the following lemma which is not difficult to prove.
Lemma 1. For r ≥ 3,

W (Cr) =

{
n(n+1)(2n+1)

2 if r = 2n+ 1,

n3 if r = 2n.

Proof of Lemma 1 is given in [18]. For an odd integer r = 2n + 1 ≥ 3, it
is known [13, p183] that Cr × Cr

∼= Cr □ Cr; further, it is known [4] that
W (Cr □ Cr) = 2r2W (Cr), and hence W (Cr × Cr) = n(n + 1)(2n + 1)3, by
Lemma 1. Thus we have

Lemma 2. W (C2n+1 × C2n+1) = n(n+ 1)(2n+ 1)3.

We use the following observations implicitly while finding distances among
the vertices of Cr × Cs.

Observation 3. Let H = Cr × Cs − (E(Y1, Ys) ∪ E(X1, Xr)); there are two
components H1 and H2 in H. The vertices in one of the components, say
H1,(resp. H2) are those (i, j) with i and j are of same(resp. different) parity.
By the nature of the graph Cr × Cs, in any shortest path between a pair of
distinct vertices, consecutive vertices of the path are either in different layers
or different columns and hence the length of a shortest path between the vertices
is either the number of layers the path visits minus one or number of columns
it visits minus one. Further, finding a shortest path, in Cr × Cs, from x1,1 to
a vertex in H2, the path has to either use the first edge x1,1x2,s or x1,1xr,2.

The following observation is helpful in finding a shortest path between a
pair of distinct vertices in Cr × Cs :

Observation 4. A path of length k exists between (u, v) and (x, y) in G×H

only if there exists in G a walk of length k between u and x and a walk of
length k between v and y in H.

The observation 4 is explained in a different context in [18, p273]. As the
tensor product is commutative, Cr × Cs

∼= Cs × Cr. Hence, in the sequel, we
assume that s ≥ r in Cr × Cs.

Theorem 5. If r = 2m + 1 ≥ 3 and s = 2n + 1 ≥ 3 with s > 2r, then for

G = Cr × Cs, W (G) = (2m+1)2(2n+1)
6

(

3n(n+ 1) + 4m(m+ 1)
)

.

Proof. As G is vertex transitive, it is enough to find the distances from x1,1
to all other vertices of G. We compute the sum of the distances from u = x1,1
to all other vertices of G.

∑

u,v∈V (G)

dG(u, v) =
∑

v∈X1

dG(u, v) + 2
( ∑

v∈Xi,2≤i≤m+1

dG(u, v)
)

, (1)



4 K. Pattabiraman,

where Xi denotes the vertices of the itℎ layer of G, the multiplication factor
2 in one of the terms in (1) appears as the distances from u to all the vertices
of the layer Xi is same as the distances from u = x1,1 to all the vertices of
X2m−i+3, 2 ≤ i ≤ m + 1; this is true because the length of a shortest path
that descends to a vertex from u = x1,1 to a vertex of Xi, 2 ≤ i ≤ m + 1, is
same as the length of a shortest path that goes from x1,1 to a vertex of X2m+1

and then ascending to a vertex in X2m−i+3 are the same.
We complete the proof in two steps, namely, (A) and (B). In (A), we find

the distances from x1,1 to all other vertices of the layer X1. In (B), we find

the distances from x1,1 to all the vertices of
m+1∪

i=2
Xi.

Assume that n is odd.
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Fig.2 Vertices of Cr × Cs
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(A): First we calculate the sum of the distances from u = x1,1 to all other
vertices of X1.

∑

v∈X1

dG(u, v) = 2
(

(2m+ 1) + (2m+ 1) + . . .+ (2m+ 1)
︸ ︷︷ ︸

(m+1) times

+(2m+ 3) +

(2m+ 5) + . . .+ n
)

+ 2
(

2 + 4 + . . .+ (n− 1)
)

,

since dG(u, x1,j) = 2m + 1, for j = 2, 4, . . . , 2m + 2, since the path traverses
through 2m+ 1 rows with its origin and terminus at X1, see Fig.2.
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The distances from u to the vertices x1,2m+4, x1,2m+6, x1,2m+8, . . . , x1,n+1 are
2m + 3, 2m + 5, 2m + 7, . . . , n, respectively, see Fig.3; the distance is easy to
calculate as the path contains vertices from j columns, one in each column,
and hence the distance is j − 1. Further, the distances from u to the vertices
x1,3, x1,5, x1,7, . . . , x1,n are 2, 4, 6, . . . , n− 1, respectively, see Fig.4. Hence

∑

v∈X1

dG(u, v) = 2(2m+ 1)(m+ 1) + 2
(

(2m+ 3) + (2m+ 5) + . . .+ n
)

+ 2
(

2 + 4 + 6 + . . .+ (n− 1)
)

= 2(m+ 1)m+ n(n+ 1). (2)
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Fig.4 Vertices of Cr × Cs
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(B): Next we shall calculate the sum of the distances from u = x1,1 to the
vertices of Xi, 2 ≤ i ≤ m+1. For this, we compute

∑

v∈Xi

dG(u, v), for the single

layer Xi. First we compute the distances from u = x1,1 to all the vertices in a
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layer with odd suffix, that is,
∑

v∈X2k+1

dG(u, v), for some 2k + 1, 3 ≤ 2k + 1 ≤

m+ 1.
For i odd,

∑

v∈Xi

dG(u, v) =

⎧

⎨

⎩

(i− 1) + 2
(

(i− 1) + ⋅ ⋅ ⋅+ (i− 1)
︸ ︷︷ ︸

i−1
2 times

+(i+ 1) + . . .+ (n− 1)
)

+2
(

2m− i+ 2) + . . .+ (2m− i+ 2)
︸ ︷︷ ︸

2m−i+3
2 times

+(2m− i+ 4) + . . .+ n
) (3)

Explanations for the terms in (3) are as follows:
dG(u, xi,1) = i− 1 as the path contains i vertices from i layers, see Fig.5, and
also dG(u, xi,j) = i− 1, j = 3, 5, . . . , i, see Fig.6. The distances from u to the
vertices xi,i+2, xi,i+4, xi,i+6, . . . , xi,n are i+1, i+3, i+5, . . . , n−1, respectively,
see Fig.7. Further, dG(u, xi,j) = 2m−i+2, for j = 2, 4, . . . , 2m−i+3, see Fig.9,
and the distances from u to the vertices xi,2m−i+5, xi,2m−i+7, xi,2m−i+9, . . . , xi,n+1

are 2m− i+ 4, 2m− i+ 6, 2m− i+ 8, . . . , n, respectively, see Fig.10.
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Fig.5 Vertices of Cr × Cs
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The multiplication factor 2 appears in all the terms except the first term of
the sum (3) because dG(u, xi,j) = dG(u, xi,2n−j+3), 2 ≤ j ≤ n+ 1, due to the
“symmetry” of the graph.

The summation of the terms of (3) gives
∑

v∈Xi

dG(u, v) = (i− 1)i+ 2
(

(i+ 1) + (i+ 3) + . . .+ (n− 1)
)

+ (2m− i+ 2)

(2m− i+ 3) + 2
(

(2m− i+ 4) + (2m− i+ 6) + . . .+ n
)

=
( (2m− i+ 2)2

2
+ n(n+ 1) +

(i− 1)2

2
−

1

2

)

. (4)
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Next we compute the distances from u = x1,1 to all the vertices in a layer
with even suffix, that is

∑

v∈X2k

dG(u, v), for some 2k, 2 ≤ 2k ≤ m+ 1.

For an even i,

∑

v∈Xi

dG(u, v) =

⎧

⎨

⎩

(2m− i+ 2) + 2{(2m− i+ 2) + . . .+ (2m− i+ 2)
︸ ︷︷ ︸

(2m−i+2)
2 times

+(2m− i+ 4)

+ . . .+ (n− 1)}+ 2{(i− 1) + ⋅ ⋅ ⋅+ (i− 1)
︸ ︷︷ ︸

i

2 times

+(i+ 1) + . . .+ n}
(5)
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Explanations for the terms of (5) are given below:
dG(u, xi,1) = 2m − i + 2, see Fig.8, and dG(u, xi,j) = 2m − i + 2, for j =
3, 5, . . . , 2m− i+ 3, see Fig.9.

b

x1,1

Y1 Y2 Y2n+1

X1

X2m+1

b

X2

Yj

bb

X2m

Xi

b

b

b

b

x2,2

x3,3

xi,i

xi−1,i−1
xi,j

xi+1,j−1

xi,j−2

xi+1,i+1

xi,i+2

xi+1,i+3
b

b

b

b

b

b

b

bb

Fig.7 Vertices of Cr × Cs
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The distances from u to the vertices xi,2m−i+5, xi,2m−i+7, xi,2m−i+9, . . . , xi,n
are 2m−i+4, 2m−i+6, 2m−i+8, . . . , n−1, respectively, see Fig.10. Further,
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dG(u, xi,j) = i − 1, j = 2, 4, . . . , i, see Fig.6, and the distances from u to the
vertices xi,i+2, xi,i+4, xi,i+6, . . . , xi,n+1 are i+1, i+3, i+5, . . . , n, respectively,
see Fig.7. The multiplication factor 2 appears in all the terms except the first
term in the sum (5) because dG(u, xi,j) = dG(u, xi,2n−j+3), 2 ≤ j ≤ n+1, due
to the “symmetry” of the graph G. The summation of the terms of (5) gives

∑

v∈Xi

dG(u, v) = (2m− i+ 2)(2m− i+ 3) + 2
(

(2m− i+ 4) + (2m− i+ 6)

+ . . .+ (n− 1)
)

+ (i− 1)i+ 2
(

(i+ 1) + (i+ 3) + . . .+ n
)

=
( (2m− i+ 2)2

2
+ n(n+ 1) +

(i− 1)2

2
−

1

2

)

. (6)

From (4) and (6) we see that irrespective of the parity of i,
∑

v∈Xi

dG(u, v) is

same. Thus
∑

2≤i≤m+1

dG(u, v) =
∑

2≤i≤m+1

((2m− i+ 2)2

2
+ n(n+ 1) +

(i− 1)2

2
−

1

2

)

= mn(n+ 1) +
m

3
(4m2 + 3m− 1). (7)

Substituting the values obtained in (2) and (7) in (1), we have

∑

u,v∈V (G)

dG(u, v) =
∑

v∈X1

dG(u, v) + 2
( ∑

v∈Xi

2≤i≤m+1

dG(u, v)
)

=
(

2(m+ 1)m+ n(n+ 1)
)

+ 2
(

mn(n+ 1) +
m

3
(4m2 + 3m− 1)

)

=
2m+ 1

3

(

3n(n+ 1) + 4m(m+ 1)
)

. (8)

The proof is similar when n is even and in this case also
∑

u,v∈V (G)

dG(u, v)

is found to be the same as (8); we omit the details.
As the graph G is vertex transitive, the sum of the distances from u = x1,1

to all other vertices of G is same as the sum of the distances from xi,j to all
other vertices of G, for all i, j, 1 ≤ i ≤ 2m+ 1, 1 ≤ j ≤ 2n+ 1. Hence

W (G) =
∣V (G)∣

2

( ∑

u,v∈V (G)

dG(u, v)
)

=
(2m+ 1)(2n+ 1)

2

(2m+ 1

3
(3n(n+ 1) + 4m(m+ 1))

)

, by (8)

=
(2m+ 1)2(2n+ 1)

6

(

3n(n+ 1) + 4m(m+ 1)
)

.
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In Theorem 5 we have assumed that r = 2m+1, s = 2n+1 and s > 2r. In
the next theorem we consider the case r < s < 2r.

Theorem 6. If r = 2m + 1 and s = 2n + 1 with r < s < 2r, then for

G = Cr×Cs, W (G) = (2m+1)(2n+1)
3

(

n3+2n−4m3+12m2n−3mn2+9mn+m
)

.

Proof. As in the above theorem, it is enough to find the sum of the distances
from the vertex u = x1,1 to all other vertices of G.

∑

u,v∈V (G)

dG(u, v) =
∑

v∈X1

dG(u, v) + 2
( ∑

v∈Xi

2≤i≤2m−n

dG(u, v)

+
∑

v∈Xi

2m−n+1≤i≤m+1

dG(u, v)
)

, (9)

since the distances from u to all the vertices of the layer Xi is same as the
distances from u to all the vertices of the layer X2m−i+3, 2 ≤ i ≤ m+ 1; this
is true because the length of a shortest path that descends to a vertex from
u = x1,1 to a vertex of Xi, 2 ≤ i ≤ m+ 1, is same as the length of a shortest
path that goes from x1,1 to X2m+1 and then ascending to a vertex in X2m−i+3

are the same. The distances from u to the vertices in Xi, 2 ≤ i ≤ 2m − n,

is different from u to the vertices in Xi, 2m − n + 1 ≤ i ≤ m + 1, as s < 2r,
reaching a vertex from u to H2 ∩ Xi, 2 ≤ i ≤ 2m − n, by using the first
edge u = x1,1x2,2n+1 is shorter than finding a path which uses the first edge
u = x1,1x2m+1,2.

Therefore, we find the sum of distances from u to all the vertices in Xi, 2 ≤
i ≤ 2m − n, and from u to all the vertices in Xi, 2m − n + 1 ≤ i ≤ m + 1,
separately. We complete the proof in three steps, namely, (A), (B) and (C).
In (A), we find the distances from x1,1 to all other vertices of the layer X1, in

(B), we find the distances from x1,1 to all the vertices of
2m−n∪

i=2
Xi; in (C), we

fine the distances from x1,1 to all the vertices of
m+1∪

i=2m−n+1
Xi.

Assume that n is odd.
(A): First we obtain the sum of the distances from u = x1,1 to all other
vertices of X1.
∑

v∈X1

dG(u, v) = 2
(

(2m+ 1) + (2m+ 1) + . . .+ (2m+ 1)
︸ ︷︷ ︸

(n−m) times

+2m+ (2m− 2)

+ (2m− 4) + . . .+ (n+ 1)
)

+ 2
(

2 + 4 + . . .+ (n− 1)
)

= 2(n−m)(2m+ 1) + 2m(m+ 1)

= 2(2mn+ n−m2). (10)
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Explanations for the terms involved in the above equation are as follows:
dG(u, x1,j) = 2m+1 for j = 2, 4, . . . , 2n−2m, see Fig.2, and the distances from
u to the vertices x1,2n−2m+2, x1,2n−2m+4, x1,2n−2m+6, . . . , x1,n+1 are 2m, 2m−
2, 2m − 4, . . . , n + 1, respectively, the paths are similar to the one described
in Fig.3. Further, dG(u, xi,j) = j − 1 for j = 3, 5, . . . , n, see Fig.4. The mul-
tiplication factor 2 appears in all the terms of the sum because dG(u, x1,j) =
dG(u, x1,2n−j+3), 2 ≤ j ≤ n+ 1, due to the “symmetry” of the graph G.
(B): Next we compute the sum

∑

v∈Xi

dG(u, v), 2 ≤ i ≤ 2m− n. First we com-

pute the distances from u = x1,1 to all the vertices in a layer with odd suffix,
that is,

∑

v∈X2k+1

dG(u, v), for some 2k + 1, 3 ≤ 2k + 1 ≤ m+ 1.

For i odd, 3 ≤ i ≤ 2m− n,

∑

v∈Xi

dG(u, v) =

⎧

⎨

⎩

(i− 1) + 2
(

(i− 1) + . . .+ (i− 1)
︸ ︷︷ ︸

i−1
2

times

+(i+ 1) + (i+ 3) + . . .+ (n− 1)
)

+2
(

(2m− i+ 2) + . . .+ (2m− i+ 2)
︸ ︷︷ ︸

2n−2m+i−1
2

times

+(2m− i+ 1) + (2m− i− 1) + (2m− i− 3) + . . .+ (n+ 1)
)

(11)

Explanations for the terms involved in the above equation are given below:
dG(u, xi,1) = i − 1, see Fig.5, and dG(u, xi,j) = i − 1, j = 3, 5, . . . , i, see
Fig.6. The distances in G from u to the vertices xi,i+2, xi,i+4, xi,i+6, . . . , xi,n
are i + 1, i + 3, i + 5, . . . , n − 1, respectively, see Fig.7. Further, dG(u, xi,j) =
2m− i+ 2, j = 2, 4, . . . , 2n− 2m+ i− 1, see Fig.9, and the distances from u

to the vertices xi,2n−2m+i+1, xi,2n−2m+i+3,

xi,2n−2m+i+5, . . . , xi,n+1 are 2m − i + 1, 2m − i − 1, 2m − i − 3, . . . , n + 1,
respectively; the path is similar to the one shown in Fig.10. The multiplication
factor 2 appears in all the terms except the first term of the sum because
dG(u, x1,j) = dG(u, x1,2n−j+3), 2 ≤ j ≤ n + 1, due to the “symmetry” of the
graph G.
The summation of the terms of (11) gives

∑

v∈Xi

dG(u, v) = (i− 1)i+ 2{(i+ 1) + (i+ 3) + . . .+ (n− 1)}+ (2m− i+ 2)

(2n− 2m+ i− 1) + 2
(

(2m− i+ 1) + (2m− i− 1)

+(2m− i− 3) + . . .+ (n+ 1)
)

=
(2m− i+ 2)(4n− 2m+ i)

2
+

(i− 1)2

2
−

1

2
. (12)
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For even i, 2 ≤ i ≤ 2m− n,

∑

v∈Xi

dG(u, v) =

⎧

⎨

⎩

(2m− i+ 2) + 2
(

(2m− i+ 2) + . . .+ (2m− i+ 2)
︸ ︷︷ ︸

2n−2m+i−2
2

times

+(2m− i+ 1)

+(2m− i− 1) + (2m− i− 3) + . . .+ (n+ 2)
)

+2
(

(i− 1) + . . .+ (i− 1)
︸ ︷︷ ︸

i

2
times

+(i+ 1) + (i+ 3) + . . .+ n
)

(13)

Explanations for the terms involved in the above equation are given below:
dG(u, xi,1) = 2m − i + 2, see Fig.8, and dG(u, xi,j) = 2m − i + 2, j =
3, 5, . . . , 2n − 2m + i − 1, see Fig.9. The distances in G from u to the ver-
tices xi,2n−2m+i+1, xi,2n−2m+i+3,

xi,2n−2m+i+5, . . . , xi,n are 2m − i + 1, 2m − i − 1, 2m − i − 3, . . . , n + 2, re-
spectively, see Fig.10. Further, dG(u, xi,j) = i − 1, j = 2, 4, . . . , i, see Fig.6
and the distances in G from u to the vertices xi,i+2, xi,i+4, xi,i+6, . . . , xi,n+1

are i + 1, i + 3, i + 5, . . . , n, respectively, see Fig.7. The multiplication fac-
tor 2 appears in all the terms except the first term of the sum because
dG(u, x1,j) = dG(u, x1,2n−j+3), 2 ≤ j ≤ n + 1, due to the “symmetry” of
the graph G.
The summation of the terms of (13) gives

∑

v∈Xi

dG(u, v) = (2m− i+ 2)(2n− 2m+ i− 1) + 2
(

(2m− i+ 1) + (2m− i− 1)

+ (2m− i− 3) + . . .+ (n+ 2)
)

+ (i− 1)i

+ 2
(

(i+ 1) + (i+ 3) + . . .+ n
)

=
(2m− i+ 2)(4n− 2m+ i)

2
+

(i− 1)2

2
−

1

2
. (14)

From (12) and (14) we see that regardless of the parity of i,
∑

v∈Xi

dG(u, v) is

same. Thus

∑

v∈Xi

2≤i≤2m−n

dG(u, v) =
∑

2≤i≤2m−n

(
(2m− i+ 2)(4n− 2m+ i)

2
+

(i− 1)2

2
−

1

2

)

= 2m2n+mn2 + 3mn− n3 − 3n2 − 2n. (15)

(C): Here we compute the distances in G from u = x1,1 the vertices of
Xi, 2m − n + 1 ≤ i ≤ m + 1; as the distances from x1,1 to all the vertices of
Xi, 2m−n+1 ≤ i ≤ m+1, are the same as in the (B) of the proof of Theorem
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2.3, we use same distances as in Theorem 2.3 to calculate the following sum.
∑

v∈Xi

2m−n+1≤i≤m+1

dG(u, v) =
∑

2m−n+1≤i≤m+1

(
(2m− i+ 2)2

2
+

(i− 1)2

2
+ n(n+ 1)−

1

2

)

=
1

3

(

4n3 + 9n2 + 5n− 4m3 + 6m2
n+ 3m2 − 6mn

2 − 6mn+m
)

.

(16)

Substituting the values obtained in (10), (15) and (16) in (9), we have
∑

u,v∈V (G)

dG(u, v) =
∑

v∈X1

dG(u, v) + 2
( ∑

v∈Xi

2≤i≤2m−n

dG(u, v) +
∑

v∈Xi

2m−n+1≤i≤m+1

dG(u, v)
)

= 2(2mn+ n−m
2) + 2

(

2m2
n+mn

2 + 3mn− n
3 − 3n2 − 2n

)

+ 2
(1

3
(4n3 + 9n2 + 5n− 4m3 + 6m2

n+ 3m2 − 6mn
2 − 6mn+m)

)

=
2

3

(

n
3 + 2n− 4m3 + 12m2

n− 3mn
2 + 9mn+m

)

. (17)

It has been verified that when n is even
∑

u,v∈V (G)

dG(u, v) is same as (17).

Hence regardless of the parity of n, the sum
∑

u,v∈V (G)

dG(u, v) is the same.

As the graph G is vertex transitive, the sum of the distances from u = x1,1
to all other vertices of G is same as the sum of the distances from xi,j to all
other vertices of G, for all i, j, 1 ≤ i ≤ 2m+ 1, 1 ≤ j ≤ 2n+ 1. Hence

W (G) =
∣V (G)∣

2

( ∑

u,v∈V (G)

dG(u, v)
)

=
(2m+ 1)(2n+ 1)

2

(2

3
(n3 + 2n− 4m3 + 12m2n− 3mn2 + 9mn+m)

)

=
(2m+ 1)(2n+ 1)

3

(

n3 + 2n− 4m3 + 12m2n− 3mn2 + 9mn+m
)

.

3. The Weiner Index of C2m × C2n+1.

In Theorems 5 and 6 we considered the tensor product of two odd cycles.
Here we consider the case where one cycle is of odd length and the other is of
even length.
Theorem 7. If r = 2m and s = 2n + 1, then for G = Cr × Cs, W (G) =
m2(2n+1)

3

(

12n2 + 12n+m2 + 2
)

.

Proof. As in the proof of the previous theorems, it is enough to compute the
sum of the distances, in G, from u = x1,1 to all other vertices of G.

∑

u,v∈V (G)

dG(u, v) =
∑

v∈X1

dG(u, v) + 2
( ∑

v∈Xi,2≤i≤m

dG(u, v)
)

+
∑

v∈Xm+1

dG(u, v) (18)
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since the distances from u to all the vertices ofXi is identical with the distances
from u to all the vertices of X2m−i+2, 2 ≤ i ≤ m; this is true because the
length of a shortest path that descends to a vertex from u = x1,1 to a vertex
of Xi, 2 ≤ i ≤ m, is same as the length of a shortest path that goes from x1,1
to X2m and then ascending to a vertex in X2m−i+2 are the same. We shall
calculate the sum of the terms of (18), separately.

If n is odd, then
∑

v∈X1

dG(u, v) = 2(2 + 4 + . . .+ 2n) = 2n(n+ 1), (19)

Explanations for the terms involved in the above equation are as follows:
dG(u, x1,j) = j − 1, for j = 3, 5, 7, . . . , n; see Fig.4, and the distances from u

to the vertices x1,2, x1,4, x1,6, . . . , x1,n+1 are 2n, 2n − 2, 2n − 4, . . . , n + 1, re-
spectively, see Fig.11. The multiplication factor 2 appears in all the terms of
the sum in (19) because dG(u, x1,j) = dG(u, x1,2n−j+3), 2 ≤ j ≤ n+ 1, due to
the “symmetry” of the graph G.

b

x1,1

Y1 Y2n+1

X1

X2m+1

b

b

Yj

Fig.11 Vertices of Cr × Cs

b

b

b

b

b

b

b

b

b

x2,2n+1

x1,2n

x2,2n−1

x1,2n−2

x2,2n−3

x1,j

x2,j+1

x1,j+2

bX2

b

b b b

To compute the sum of the second term of the equation (18), we need
∑

v∈Xi

dG(u, v)

for each i, 2 ≤ i ≤ m. First we compute it.

∑

v∈Xi

dG(u, v) =

⎧

⎨

⎩

(2n+ 1) + {(2n− 1) + (2n− 3) + . . .+ (n+ 2)}

+2{(i− 1) + . . .+ (i− 1)
︸ ︷︷ ︸

i

2
times

+(i+ 1) + (i+ 3) + . . .+ n} if i is even,

(i− 1) + 2{(i− 1) + . . .+ (i− 1)
︸ ︷︷ ︸

i−1
2

times

+(i+ 1) + (i+ 3) + . . .+ n− 1}

+{(2n− 1) + (2n− 3) + . . .+ (n+ 1)} if i is odd,

(20)
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Explanations for the terms involved in the above equation are given below:
If i is even, then dG(u, xi,1) = 2n+1, see Fig.12, and the distances from u to the
vertices xi,3, xi,5, xi,7, . . . , xi,n are 2n−1, 2n−3, 2n−5, . . . , n+2, respectively,
see Fig.12. Further, dG(u, xi,j) = i − 1, j = 2, 4, . . . , i; the pattern of the
path is similar to the one shown in Fig.6, and the distances from u to the
vertices xi,i+2, xi,i+4, xi,i+6, . . . , xi,n+1 are i+1, i+3, i+5, . . . , n, respectively;
the pattern of the path is similar to the one shown in Fig.7. If i is odd, then
dG(u, xi,1) = i−1; the pattern of the path is similar to the one shown in Fig.5,
and dG(u, xi,j) = i−1, j = 3, 5, . . . , i; the pattern of the path is similar to the
one shown in Fig.6.

The distances from u to the vertices xi,i+2, xi,i+4, xi,i+6, . . . , xi,n are i+1, i+
3, i + 5, . . . , n − 1, respectively; the pattern of the path is similar to the one
shown in Fig.7. The distances from u to the vertices xi,3, xi,5, xi,7, . . . , xi,n+1

are 2n, 2n − 2, 2n − 4, . . . , n + 1, respectively, see Fig.12. The multiplication
factor 2 appears in all the terms except the first term of the sum because
dG(u, x1,j) = dG(u, x1,2n−j+3), 2 ≤ j ≤ n + 1, due to the “symmetry” of the
graph G.

b
x1,1

Y1 Y2n+1

X1 b

b

Yj

Fig.12 Vertices of Cr × Cs

x2,2n+1

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

x3,2n

x4,2n−1

xi,j

xi−1,j+1

xi,j+3
xi,2n−2m+i+1

xi−1,2n−2m+i

xi,2n−2m+i−1

xi−1,2n−2m+i+2

xi−2,2n−2m+i+3

X2m

b

b

b b bX2m−1

Xi
b

b b

b

b

b

bX2

Y2

The summation of the terms of (20) gives

∑

v∈Xi

dG(u, v) =

{
(i−1)2

2 + 2n(n+ 1) if i is odd,
(i−1)2

2 + 2n(n+ 1) + 1
2 if i is even.

(21)
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Next we compute
∑

v∈Xi, 2≤i≤m

dG(u, v). For this, first we assume m is odd.

For odd m,

∑

v∈Xi, 2≤i≤m

dG(u, v) =
∑

2≤i≤m

((i− 1)2

2
+ 2n(n+ 1)

)

+
∑

i=2,4,...,m−1

1

2

=
(m− 1)

12

(

(2m2 −m+ 3) + 24n(n+ 1)
)

(22)

For an even m,

∑

v∈Xi, 2≤i≤m

dG(u, v) =
∑

2≤i≤m

((i− 1)2

2
+ 2n(n+ 1)

)

+
∑

i=2,4...,m

1

2

=
m

12
(2m2 − 3m+ 4) + 2n(n+ 1)(m− 1) (23)

Next we compute the distances from u to all the vertices of Xm+1.

∑

v∈Xm+1

dG(u, v) =

⎧

⎨

⎩

m+ 2
(

m+ . . .+m
︸ ︷︷ ︸

m

2 times

+(m+ 2) + (m+ 4) + . . .+ 2n
)

if m is even,

(2n+ 1) + 2
(

m+ . . .+m
︸ ︷︷ ︸

m+1
2 times

+(m+ 2)

+(m+ 4) + . . .+ (2n− 1)
)

if m is odd.

After summing the above terms, we get

∑

v∈Xm+1

dG(u, v) =

{
m2

2 + 2n(n+ 1) if m is even,
m2−1

2 + 2n(n+ 1) + 1 if m is odd.
(24)

Substituting the values obtained in (19), (23) and (24) in (18), we have
If m is even, then

∑

u,v∈V (G)

dG(u, v) =
∑

v∈X1

dG(u, v) + 2
( ∑

v∈Xi,2≤i≤m

dG(u, v)
)

+
∑

v∈Xm+1

dG(u, v)

= 2n(n+ 1) +
(m

12
(2m2 − 3m+ 4) + 2n(n+ 1)(m− 1)

)

+
(m2

2
+ 2n(n+ 1)

)

=
m

3

(

12n2 + 12n+m2 + 2
)

, (25)

If m is odd, again,
∑

u,v∈V (G)

dG(u, v) is found to be the same as (25). Hence

∑

u,v∈V (G)

dG(u, v) =
m
3 (12n

2 + 12n+m2 + 2), irrespective of m is odd or even.
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The proof is similar when n is even and in this case also
∑

u,v∈V (G)

dG(u, v) is

found to be same as (25); we omit the details.
As the graph G is vertex transitive, the sum of the distances from u = x1,1

to all other vertices of G is same as the sum of the distances from xi,j to all
other vertices of G, for all i, j, 1 ≤ i ≤ 2m, 1 ≤ j ≤ 2n+ 1. Hence

W (G) =
∣V (G)∣

2

( ∑

u,v∈V (G)

dG(u, v)
)

=
2m(2n+ 1)

2

(m

3
(12n2 + 12n+m2 + 2)

)

, by (25)

=
m2(2n+ 1)

3

(

12n2 + 12n+m2 + 2
)

.
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