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Abstract

In this paper, we introduce and study the notions of pseudospectrum, condition pseudospectrum of non-
archimedean matrices and pseudospectrum of non-archimedean matrix pencil. Many results are proved and
we give some examples.
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1. Introduction and Results

Throughout this paper, K is a non-archimedean (n.a) non trivially complete valued field with valuation
| - |, Mp(K) denote the space of all n x n matrices over K, Q, is the field of p-adic numbers. Ingleton [5]
showed that:

Theorem 1.1. Let X be a n.a Banach space. For all x € X\{0} there is £ € X' such that {(z) =1 and
el = llx[I =

We introduce the following definitions.

Definition 1.2. Let A € M,,(K). The spectrum of matrix A is given by

o(A) ={X € K: (A— \) is not invertible}.
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Definition 1.3. Let A, B € M, (K) and £ > 0. The pseudospectrum o(A) of matrix A is defined by
o(A)=c(AU{NeK: [[(A-XD)7Y > 1)
The pseudoresolvent p.(A) of matrix A is defined by
pe(A) = p(A) A € K5 (A=A <,
by convention ||(A — AI)~Y|| = oo if, and only if, A € o(A).
In particular case of [[1], Proposition 3.2], we have:

Proposition 1.4. Let A € M, (K) and € > 0, we have
(i) o(A) = () 0=(A).
e>0
(11) For all e1 and €2 such that 0 < g1 < g2, 0(A) C 0¢,(A) C 0,(A).
In particular case of [[I], Theorem 3.4], we have:

Theorem 1.5. Let X be a n.a finite dimensional over Q, such that || X|| C |Qy|, let A € L(X) and e > 0.
Then,

o:(A)= |J o(4+0).
Icl<e

We have some examples of non-archimedean pseudospectrum of matrices.

Example 1.6. Let K = Q, and € > 0. If

A 0
Then

0:(4) = o(A)UNEG: (A= AN > 1)
e
|)\1—>\|,|>\2—)\| 9 '

= {)\1, /\2} U {)\ €Qp: max{

Example 1.7. Let K = Q, and € > 0. If

A= <(1) ?) € Mo (Qyp).
Then

0:(4) = o(A)UNEQy: (A= ADT> 1)

— {(Ju{reQ,: max{ui)\’, e EﬂA)?I} > é}.

Example 1.8. Let K = Q, and € > 0. If

11
A= <1 1) € Ma(Qp).
Consequently

0:(4) = o(AUNEQ: (A= AN > 1)

1 1-A | 1
PYCESVEI ISy

= {0,2} U{X € Qp : max{
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The following definition is introduced.

Definition 1.9. Let A € M,,(K) and € > 0. The condition pseudospectrum of matrix A is given by
AA) =o(A)U{AeK: [[(A=ADII(A-AD)T! >}

by convention |[(A — AI)|||[(A — X)7|| = oo, if and only if A € o(A).
The pseudoresolvent of matrix A is K\A(A).

In particular case of [2], Proposition 2.2 (). We have:

Proposition 1.10. Let A € M, (K). For all € > 0, we have:

(i) o(A) = (] A(A).

0<e<1
(i7) If 0 < €1 < g9, then o(A) C A, (A) C A, (4).
From Theorem 2.1 of [2], we have:

Lemma 1.11. Let X be a n.a finite dimensional Banach space over K, let A € L(X) and € > 0. Then
A€ A(A)\ o(A) if, and only if, there is x € X such that

(A = AD)z|| <el|A = AL]lz]]
The following theorem is a particular case of [[2], Proposition 2.3].

Theorem 1.12. Let A € M,,(K) be invertible and A~' € M, (K) and e >0 and k = ||[A71||||A||. Then,
1
A€ A(AI\{0}if and only if 3 € Ak (A)\{0}.

In the following theorem, we investigate the relation between the condition pseudospectrum and the
usual spectrum in K.

Theorem 1.13. Let A € M, (K) and A € K and £ > 0. If there is C € M, (K) such that ||C|| < e||A— ||
and A € 0(A+C). Then, A € A.(A).

Proof. Suppose that there is C such that ||C|| < e]|A—AI|. If A & A.(A), hence X € p(A) and ||[A—\I||||(A—

M) <e h
Consider D defined on X by
D= Z(A—/\I)_1<—C(A—/\I)_1> . (1.1)
n=0

One can see that D = (A — A\I)~Y(I + C(A — XI)~!)~L. Hence there is y € X such that
D(I+C(A=X)"Ny=(A-AD)"1y. (1.2)

We put z = (A — M)~1)y. We have that for each z € X, D(A — A\ + C)z = x. Moreover, for all
r € X, (A— X + C)Dx = x. Thus, we conclude that (A — A + C) is invertible and D = (A — X\ + C)~ 1,
contradiction. Then A € A.(A). O

Weset C.(X) = {C € L(X) : ||C|| < e||A—A\I]|}. The following result is a particular case of [[2], Theorem
2.4].
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Theorem 1.14. Let X be a n.a finite dimensional Banach space over Q, such that || X || C |Q,|, let A € L(X)
and € > 0. We have,
A(A) = ] o(4+0).
C=(X)

Proof. Let X\ € U o(A+C). If X € p(A) and ||A — ABJ|||(A — AB)™!|| < e!. Consider D defined on X
Ce(X)
given by

D= i(A—/\I)1<—C(A—/\I)1>n. (1.3)
n=0

With simple calculation we have D = (A — AB)~}(I + C(A — M)~1)~!. Then there is y € X such that
D(I+C(A=AB) Yy = (A—-X)"ly. We set x = (A — M)~ 1)y. Hence for all z € X, D(A— X +C)z = .
Consequently, for each # € X, (A—A+C)Dx = z. Thus, (A—\+C) is invertible and D = (A—X[+C)~L.
Conversely, suppose that A € A;(A). If A € 0(A), we put C = 0. If A € A;(A) and A € 0(A). By Lemma
[L1Tand || X| C |Qpl, there is 2 € X such that ||z| = 1 and |[(A — A)z| < e]|A — AI|.

By Theorem [1.1] there is ¢ € X’ such that ¢(z) = 1 and ||¢|| = ||| ~* = 1. Consider the operator C' defined
on X by for all y € X, Cy = —¢(y)(A — A )x. We have that |C|| < ¢||A — AI||. Hence, ||C|| < ¢||A — M|
and D(C) = X. Thus, for all x € X, (A — X + C)x = 0. So, (A — A + C) is not invertible. Consequently,
re | o4a+0). O

Ce(X)

Example 1.15. Let a,b € Q, with a # b. If
a 0
=03

[A = M| = max{la — Al, |b— Al}.

then o(A) = {a,b} and

Hence | A b
A= M||(A= D)"Y = - —a
4 = ATIA = AD~ ) = mas { =50 = b
Thus, the condition pseudospectrum of A is
la—A 1 b—A 1
A:(A) ={a,b A : - A P> — .
() = (@b UDEQy: =i > U e =5 > ]

We have the following propositions.
Proposition 1.16. Let A € M, (K) and for every 0 < e < 1 such that ¢ < ||A — X||. Then,
(1) X € A(A) if, and only if, X € o a—xp)(A).
(2) A€ 0-(A) if, and only if, \e A_=__(A).

[IA=AL]]

Proof. (1) Let A € A-(A), then X\ € o(A) and ||(A — XI)||[[(A —XI)~Y|| > e~ . Hence A € 0(A) and ||(A —
A7) > Ik Consequently, A € o, 4—x7|(A). The converse is similar.

(2) Let A € 0.(A), then, A € 0(A) and |[(A — M)7!|| > e~!. Thus

A€ a(A) and ||[(A = AD|||[(A—=XD)7H| > W-

Then, A € I (A). The converse is similar.
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The following proposition is a particular case of [[2], Proposition 2.2 (7ii)].
Proposition 1.17. Let A € M, (K) and e > 0. If a, B € K, with § # 0 then Ac(BA+ al) = a+ BA(A).
We have the following theorem.

Theorem 1.18. Let A,C,V € My (K) and V be invertible. If C = V"YAV. Then, for all 0 < ¢ < 1,
E=|[VYIVI and 0 < k%c < 1, we have

A= (C) C A(A) C Age (O).

k2
Proof. Let \ € Ak%(C'), we have \ € O'(C)( = U(A)> and

2
i -1

-1
= <llc = Allil¢ = AD) V(A=A VIV (A= A1) V]

< (Vi) i(a-an)in(a-an)
< ®I(a-an)i(a-an) .

Or, k? > 0, then, A € A.(4, B). Hence, Ak%(C) C A(A).
Let A € A.(A). Then, \ € 0—(0)( - U(A)) and

1 _ _ -1
— < lA=MllIA=-AD7Y = v(e-a)vv(c—ar) v
2 —1
< (Vi) (e = an)i(e = ar)
-1
< ®l(c-n)li(c-ar)
Hence, A € Ay2.(C, B). Consequently A.(A, B) C A2, (C, B). O

For B = I, we have the following example.

Example 1.19. Let A € B(K") be diagonal operator such that for all i« € {1,--- ,n}, Ae; = a;e;, with
(ai)ie{1,~-,n} C Qp. Then
U(A) = {a’i RS {17 7”}}

and for all A € p(A), we have:

_ [(A =) ""ei
(A=Y = sup :
ie{l,,n} el
= sup 1 = !
C eftemr|@i— A inf e — Al
i€l n} | @ ie{g}“?n}\a |

Hence, for all 7,5 € {1,--- ,n},

{regta-nia-y=1h - U {reo: ,'Zjii’, =

. 3
i, Jj i#]

Consequently,

oe(A)={a;: ie{l,--- ,n}}U U {)\EQP: |ai'_i|| >1}.

i j i @ c

We introduce the following definitions.
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Definition 1.20. Let A, B € M,,(K), the spectrum o(A, B) of matrix pencil (A, B) or of the pair (A, B)
is defined by

0(A,B) = {Ae K: A— ABisnotinvertible in L(X)},
= {AeK:0€0(A—-AB)}.

The resolvent set p(A, B) of matrix pencil (A, B) is the complement of o(A, B) in K given by
p(A,B) ={\€ K : Ry\(A,B) = (A—AB)! exists in M, (K)}.
Ry (A, B) is called the resolvent of matrix pencil (A, B).
Definition 1.21. Let A, B € £(X), the couple (A, B) is said to be regular, if p(4, B) # 0.
For a regular couple (A, B), we have

Definition 1.22. Let A,B € M, (K) and £ > 0. The pseudospectrum of matrix pencil (A, B) on X is
defined by
0 (A,B)=c(A,B)U{NE K : |[(A-AB)7Y| >¢7'}.

The pseudoresolvent of matrix pencil (A4, B) is denoted by
pe(A,B) = p(A,B)N{A€ K : [(A=AB)"| <=1},
by convention ||[(A — AB)~!|| = oo if, and only if, A € o (A, B).
We introduce a new definition of pseudospectrum of matrix pencil in non-archimedean case.

Definition 1.23. Let A, B € M, (K) and £ > 0. The pseudospectrum of matrix pencil (A, B) on X is
defined by
Y (A,B)=c(A,B)U{NEK: (A= AB)™'B| > '}.

By convention ||(A — AB)™!B|| = cc if, and only if, A € o (A, B).
Remark 1.24.
(i) If B =1, then, ¥.(A,I) = 0.(A) where o.(A) is pseudospectrum of A.

In the rest of this paper, we assume that (A, B) is regular. The next proposition gives a comparison
between o.(A, B) and ¥.(A4, B).

Proposition 1.25. Let A, B € M, (K). Then for all £ > 0,
Es(Av B) - O-eHBH(A’ B)

Proof. Let € >0 and X € ¥.(A, B), then A € 0(A, B) and

L < j(a-xB)7B (1.4)

€
< [((A=AB)"HlIB]l. (1.5)
Hence ]
= < [(A=AB)7H.
1Blle
Thus A € 0.5 (A, B). Consequently

Za(A7 B) - O—EHBH(A’ B)
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We have the following lemma.
Lemma 1.26. Let A, B € M, (K) such that | B|| = 1. Then for all £ > 0,
Y.(A,B) C 0-(A, B).
We have the following theorem.
Theorem 1.27. Let A, B,C € M, (K) such that C is invertible. Then
(1) For alle >0, ¥.(A,B)=%.(CA,CB).
(2) For alle >0, Y.(A,C) = o.(C~YA). In particular C = I, $.(A,I) = 0.(A).

Proof. (1) For all A € p(A, B), we have (A—AB)"1C~! = (CA—ACB)™!. Then, 0(A, B) = o(CA, CB).
In addition, it is clear that

|(CA—XCB)"'CB| = ||(A-AB)™'B|. (1.6)
Hence A € ¥.(A, B), if, and only if, A € ¥.(CA, CB).

(2) Assume that C is invertible, then (A — A\C)™'C = (C~'A — MXI)~!. Then \ € ¥.(A, O), if and only if
A € 0.(CLA).
O

Proposition 1.28. Let A, B € M, (K). For all € > 0, we have

(i) o(A,B) = (| Z(A, B).

e>0

(ii) If 0 < &1 < &9, then o(A, B) C ¢, (A, B) C ¥.,(A, B).

Proof. (i) By Definition|1.23} we have for alle > 0, o(A, B) C ¥.(A, B). Conversely, if A € m Y. (A, B),
e>0

then for all e > 0, A € X.(A, B). If A\ ¢ 0(A, B),then A€ {A € K: ||(A—AB)"!'B| > ¢!}, taking
limits as e — 07, we get ||[(A — AB)"!B|| = co. Thus ) € (A, B).

s -1 -1 -1
. € ) ) - . € 9 :
(ii) For 0 < e < 3. Let A € 0., (A, B), then ||[(A—AB)™'B| >¢e; " >¢e, . Hence A € 0.,(A, B)

We have the following examples.

Example 1.29. Let K = Q,.
(i) If

A= <8 (1)> and B = <(2) 8) € M2(Qp).

One can see that for all A € Qp, det(A — AB) = —2), then (A, B) = {0}. Also we have
1 = 0
e (7 9).

thus, for all e > 0, £.(A4,B) ={0} U{A € Q, : |\|, < ¢}.
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(ii) If

A

<(1) 1) and B = (é g) € Ma(Qy).

Then, for all A € Q,, det(A — AB) = (1 — A)(1 — 2A), hence (A, B) = {1,1} and

1 1 1
A—-AB)™'B|| = :
IC )~ Bl max{ufu’ |>\—1||1—2)\|’|1—2>\|}

Hence, the pseudospectrum of (A, B) is

1 1 1 1 1
$.(4,B) = {=, 13U {\ : =1
(4, B)=1{3. 1} { €Q max{’)\_u, ])\—1|]1—2)\]’]1—2)\]}>5}
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