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Abstract

The aim of this study is to illustrate that the main result of the paper [I] is incorrect by giving an counter-
example. T also present and study a new algorithm 4.1 to correct the main result of [I]. The possible impact
of this study is rather important, it puts a question mark on results in all references that have been cited
This publication ( 203 times just in Google Scholar alone).
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1. Introduction

Variational inequalities play an important role in studying many valuable problems arising in physical,
medical images , industry, economics, and so on (see [2, 3, 4, 5] among others). A large class of problem
in fluid mechanic, boundary value problem, transportation and equilibrium problems can be studied by
variational inequalities is another beneficial of variational inequalities. Verma in [I] consider a system of two
nonlinear variational inequality (abbreviated as SNVI) problems as follows: determine elements z*,y* € K
such that :

{ (pT (y*) +z* —y*,v—a*) > 0,YVw e K,p>0 (11)

T (z*)+y* —x*v—y*) >0,Yoe K,n>0

In this notes new approximation schemes (Algorithm 4.1) are discussed for solving the problem (SNVT). The
results obtained in the paper correct the main results in [IJ.
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2. Preliminaries

Throughout this paper we assume that H is a real Hilbert space whose inner product and norm are
denoted by (.,.) and ||.|| respectively. We recall:

Definition 2.1. A mapping T : H — H is called A-Lipschitz continous if there exists a constant A > 0,
such that :
Vo,y € H:||T (x) =T (y)l < Mlz -yl

Definition 2.2. A mapping T : H — H is called r-strongly monotonic if there exists a constant r > 0,
such that :
Va,y € H:||T (2) =T ()| >z —yl®.

Proposition 2.3. Let K be a closed convex set in H, for given an element z € H, v € K satisfies the
inequality
(x—z,y—12)>0,Vy € K

if and only if
x = Pk (2)

where Py is a projection of H into K.

It is known that Py is a nonexpansive mapping, i.e
1Px () — Px ()l < llz —yll,Vo,y € H.

Using Proposition we can easily show that, finding the solution (z*,y*) € K x K of (|.1)) is equivalent
to finding (z*,y*) € K x K such that

{ v = (1—oap)x* + a,Px [y* — pT (y*)]
y* = Px [z" —nT (z¥)]

where a,, € [0, 1] for all n > 0.
In the following section, we show that the results of Verma in [I] are incorrect.
3. About Verma’s Paper

Verma used the following iterative algorithm for solving the problem (SNVI) [Algorithm 3.1 in [1] ].
Algorithm 3.1. For arbitrary chosen initial points zg, yo € K, compute the sequences {z,} and {y,} using

{ Tnt1 = (1 — an) Tn + an Pk [yn - pT (yn)]
Yn = (1 - Bn) Ty + Bn P [xn —nT (xn)]

where ay,, 5, € [0, 1] for all n > 0.

Theorem 3.1. [Theorem 3.1 in [1] ] Let H be a real Hilbert space and K a nonempty closed convex subset
of H. Let T : K — H be strongly r-monotonic and p-Lipschitz continous. Suppose that x*,y* € K form a
solution to the SNVI problem. If

2r

0< P < -3
I
2r

0< n < -3
1

(o]
and am, Bn € [0,1], > anfn = 00, then for arbitrarily chosen initial points xo,yo € K, x,, and y, obtained

n=0
from Algorithm 3.1 converge strongly to x* and y* respectively.
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Commentaries

The sequence ¥,, does not converge to y* because:
If we take:

2
0<p< —Z
1
2r
1
Qn = /Bn = 5
o0
It is clear that Y «ay,/f3, = oo, and
n=0
1 1
Tn1 = 5+ 5 Pr [yn = pT (yn)]

1 1
Yn = §xn + §PK [2n — 0T (22)]
By using Theorem ({3.1]), we obtian:

1 1
v* = 2"+ P [y* — pT (y*)]

i

y* = 533* =+ §PK [ —nT (x*)]

Which is equivalent to,
a* = P [y* = pT (y")]
2y" — " = Pg [z =T (z7)]

Using Proposition ([2.3]), we arrive at

(pT (y*) +2* —y*,v —a*) > 0,Vv € K,
(NT (%) + 2y* — 22*,v — 2y* + 2*) > 0,Yv € K.

Which is not the same problem SNVI.

Remark 3.2. Let us consider the following text quoted from the proof of ( Theorem 3.1 in [I] ):

Similary, we have

lye —o*ll = (1= Be) (ax — &) + BuPic [ax — 0T (24)] — BuPrc 27 — 0T ()]
< (1= By) e — 2%l + By llax — 2] = n[T (ax) — T ()]
< (1= B ok = 2| + B [1 = 207 + ()?] ok — 27
(

L= Bk) |z — || + Bro ||og, — 27|,

1
where o0 = |1 —2nr + (77,11)2] ‘<1

This remark implies that the mistake is not a typo.

4. Main result

Now we suggest and analyze the following iterative method for solving (L.1).

Algorithm 4.1. For arbitrary chosen initial points z¢p € K, compute the sequences {z,} and {y,} using

{ Tnt1 = (1 — an) T + anPr [yn — T (yn)]
Yn = Prc [wn — 1T (2n)]

where a, € [0, 1] for all n > 0.
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Theorem 4.1. Let (z*,y*) be the solution of . Suppose that T : H — H be strongly r—monotonic and

p— Lipschitz continuous. If

2r
0<p<7
o

2 (4.1)
0< n < -3
I

(o]

and a, € [0,1], > ap = oo, then for arbitrarily chosen initial points vo € K, x, and y, obtained from
n=0

Algorithm 4.1 converge strongly to z* and y* respectively.

Proof.  To prove the result, we need first to evaluate ||z,4+1 — «*|| for all n > 0.

(1 = an) zn + on Pk [yn — pT (yn)] — (1 — an) 2" + o P [y* — pT (y7)]]|
< (1 —an)||#n — 2% + an | P [yn — pT (yn)] — Px [y* — oT (v)]||
< A =an)llzn — 2%+ anlllyn —y*] = p[T (yn) = T ()]l

Since T is r—strongly monotonic, we have :

241 =27

o = y* = [T (yn) =T @O = lyn =y 1> = 20(T () = T (¥*) .40 — ¥°)
+ 02T (yn) = T (y)I°
< =2 [rllun =y I2] + llgn — 712+ A2 IT () = T ("))

Using the fact that T is Lipschitzian, we have:

[yn =y = P [T (yn) — T (Y)II° < [1 =207 + p*1%] lyn — v*|I?

As a result, we have:
@1 — 2 < (1= @n) 20 — 2] + b llgn — °| (1.2)

1
where 61 = [1 — 2pr + p*p?]?
Now we evaluate ||y, — y*|| for all n > 0.

lyn —y*l = |1Px [2n — 0T (2n)] — Prc [ =0T (27)]]]
< lfen =2 =0 [T (20) = T (27)]]

Similary, Since T is r—strongly and pu—Lipschitz continuous mapping, we obtain :

[y =7l < 02 flzn — 27| (4.3)

1
where 63 = [1 — 2nr + n?p?]?
From assumption (4.1]), it is clear that §; <1 and 62 <1 . From (4.2)) and (4.3]) It follows that,

[Znt1 = 27| < (1= an) [J2n — 27| + anb1s |20 — 27|

wich implies that:
k=n

lzn1 — 2% < T] (1 = (1 = 6162) o) w0 — 2|
k=0

Since 0 < 6162 < 1 and Y ay = oo it implies in light of [6] that
k=0
k=n
lim ] ((1—(1—-6162)ar)) =0 therefore z, — z* and y,, — y*. =

n—-+o0o k—0
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