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Abstract

Metric Dimension of any graph G is termed as the minimum number of basis element in the resolving set.
Let G = (V,E) be any connected graph and length of the shortest path between s and h is known as
distance, denoted by d(s, h) in G. Let B = {b1, b2, ..., bq} be any ordered subset of V and representation
r(u|B) with respect to B is the q−tuple (d(u, b1), d(u, b2), d(u, b3), ..., d(u, bq)}, here B is called the resolving
set or the locating set if every vertex of G is uniquely represented by distances from the vertices of B or if
distinct vertices of G have distinct representations with respect to B. Any resolving set containing minimum
cardinality is named as basis for G and its cardinality is the metric dimension of G is denoted by dim(G).
We investigated metric dimension of Polythiophene Network, Backbone Network, Hex-derive Network and
Nylone6,6.
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1. Introduction

The name of the first mathematician who introduced the terminology of metric dimension of a connected
graph is Slater in [1]. Same concept was also studied by Melter et al. independently in [2]. Another
mathematician named F. Simon Raj et al. also studied the metric dimensions of various chemical networks
as Star of David network SD(n) in [3]. We need to study the concept of distance of graphs to get the clear
concept about metric dimension of connected graphs clearly.
Suppose a connected graph G, then distance in graph is length of the shortest path between any two
vertices s and h and it can be denoted as d(s, h). Here is an example of ladder graph G given in fig3.1 in
which different paths exist from vertex p to u but two of them are the shortest paths. First is p to q and
then move to u and second path is from p to t and then move to u and both have length 2. So the distance
between p and u is 2 i.e d(p, u) = 2.
The maximum value of distance d(p, u) is called eccentricity of the vertex .
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Figure 1: LadderGraph

Let assume a connected graph G and L = {l1, l2, ..., lk} is an ordered subset of set of vertices of
G i.e V (G). The representation r(m|L) of any fixed vertex m of graph G w.r.t L is the k − tuple
(d(m, l1), d(m, l2), d(m, l3), ..., d(m, lk)}, where L is said to be a resolving set or locating set in [4, 1], if
each vertex of graph G is uniquely determined by its distances from the vertices of L. Basis for the graph
G can be defined as, “ It is the resolving set containing least number of vertices. Minimum cardinality of
the resolving set is considered as the metric dimension of graph G, which is labeled as dim(G) in [5]. An
adequate literature related to metric basis is discussed in [6, 2, 7].
Bounded metric dimension can be defined as, If the metric dimension of a connected graph changes
when the number of vertices changes in the graph and remain finite when the number of vertices become
infinite then it is called boundedmetricdimension.
Unbounded metric dimension can be defined as, If the metric dimension of a connected graph changes
when the number of vertices changes in the graph, and becomes infinite when number of vertices is infinite
then it is known as unboundedmetricdimension.
If the metric dimension remains unchanged for all number of vertices in a connected graph G, then it is said
to be constant metric dimension. Path graph is the only graph which has metric dimension equal to 1
in [8] and metric dimension of cycles is 2 for n ≥ 3.
It will not be wrong to say that metric dimension is the most important field of graph theory. It has lot
of uses in various field of life, for instance in pattern recognition, network theory, image processing, op-
timization and robot navigation etc. The implementation of metric dimension is in space navigation. A
work place can be represented by vertex and edge represents the link between the workplaces. We are to
place minimum robots at certain vertices in such way that they can trace each and every vertex exactly
one time, this problem of placing robots is solved by using the concept of metric dimension. In chemistry,
many chemical compounds exists which have one chemical formula but different chemical structures but
chemists choose only that one which expresses the best physical and chemical properties of compound. For
this, chemists need such mathematical labeling of that chemical compound which gives different labeling
to distinct compounds. Therefore, mathematical representation of different chemical compounds has many
importance for chemists in drug discovery. A chemical compound structure is expressed by a graph which is
labeled in such way that vertex of graph express the atom and edge of graph express bond types, mentioned
in [9, 8]. So, theoretic description of graphs is discussed in the papers [10, 8, 7].

2. Polythiophene Network

Polythiophenes are five membered rings with one heteroatom together with their benzo and other carbocylic.
The order of PLY(m) is 5m and the size of PLY(m) is 6m− 1. Polythiophene are used in electronic devices
like water purification devices, biosensers and light emitting diodes and in hydrogen storage.
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Theorem 1.1. For G ∼= PLY(m); m = 1 then G has metric dimension 2.

Proof: PLY(1) is a cycle with 5 vertices as it is not path so its metric dimension is not 1 [9] and as it
is C3 so have metric dimension 2.

(1,2)                (2,1)

   (1,1)

(2,0)(0,2)

Figure 2: PLY(1)

Theorem 1.2. For G ∼= PLY(m); m ≥ 2 then G has metric dimension is 2.

Proof: Let W = (V1,5, Vn
5
,4)

then
Vi,1 = (3i− 2, 3n5 − 3i+ 2), for 1 ≤ i ≤ n

5 , j = 1
Vi,2 = (3i− 1, 3n5 + 1− 3i), for 1 ≤ i ≤ n

5 , j = 2
Vi,3 = (3i− 3, 3n5 + 2− 3i), for 1 ≤ i ≤ n

5 , j = 3
Vi,4 = (3i− 1, 3n5 − 3i), for 1 ≤ i ≤ n

5 , j = 4
Vi,5 = (3i− 2, 3n5 + 1− 3i), for 1 ≤ i ≤ n

5 , j = 5.
Because Representation of each vertices with respect to W is unique.
⇒ W is resolving set of G and |W | = 2
Because G is not a path so metric dimension of G ∼= PLY(m) is 2.
where n is numbers of vertices.

(1,16)     (4,14)                       (5,13)                 (7,10)               (10,8)                      (11,7)               (13,4)             (16,2)                         (17,1)

(0,17)      (2,15)      (3,14)         (5,12)          (6,11)            (8,9)             (9,8)             (11,6)           (12,5)          (14,3)           (15,2)           (17,0)

(1,17)      (2,16)          (4,13)                         (7,11)           (8,10)                  (10,7)                         (13,5)           (14,4)                (16,1)

Figure 3: PLY(6)

1.1. Backbone DNA Network

DNA consists of two strands that wind around each other like a twisted ladder.Each strand has a
backbone made of deoxyribose sugar and a phosphate group.4-bases attached to each sugar are ade-

nine,cytosine,guanine,thyaine.Both ends of DNA have a number.i-e one end is 5́ and the other is 3́.´́5 end

having a phosphate group attached to ´́5 carbon of ribose ring and ´́3 end is usally unmodified.The order
of BSDNA(m) is 7m − 2 and the size of BSDNA(m) is 8m − 3.DNA having genetic material essential for
living things.DNA functions include replication,encoding informatiom,mutation or recombination and gene
expression.
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Theorem 1.3. For G ∼= BSDNA(m); m = 1 then G has metric dimension 2.

Proof. BSDNA(1) is a cycle with five vertices as it is not path so its metric dimension is not 1 [9] and as it
is C5 so we have metric dimension 2.

(2,1)

(0,1)                          (1,0)

(1,2)                   (2,2)

Figure 4: BSDNA(1)

Theorem 1.4. For G ∼= BSDNA(m); m ≥ 1 then G has metric dimension 2.

Proof. Let W = (V1,4, Vn+2
7

,5)

then
ui,1 = (4i− 3, 4(n+2)

7 + 2− 4i), for 1 ≤ i ≤ n+2
7 , j = 1

ui,2 = (4i− 2, 4(n+2)
7 + 2− 4i), for 1 ≤ i ≤ n+2

7 , j = 2

ui,3 = (4i− 2, 4(n+2)
7 + 1− 4i), for 1 ≤ i ≤ n+2

7 , j = 3

ui,4 = (4i− 4, 4(n+2)
7 + 1− 4i), for 1 ≤ i ≤ n+2

7 , j = 4

ui,5 = (4i− 3, 4(n+2)
7 − 4i), for 1 ≤ i ≤ n+2

7 , j = 5

ui,6 = (4i− 2, 4(n+2)
7 − 1− 4i), for 1 ≤ i ≤ n+2

7 , j = 6

ui,7 = (4i− 1, 4(n+2)
7 − 2− 4i), for 1 ≤ i ≤ n+2

7 , j = 7
Because Representation of each vertices with respect to W is unique.
⇒ W is resolving set of G and |W | = 2 Because G is not a path so metric dimension of G ∼= BSDNA(m) is
2.
where n is numbers of vertices.

(0,9)             (1,8)              (2,7)             (3,6)            (4,5)            (5,4)              (6,3)            (7,2)             (8,1)              (9,0)

                                            (2,9)                                                                          (6,5)                                                                         (10,1)            

(1,10)            (2,10)                                                    (5,6)            (6,6)                                                      (9,2)            (10,2)

Figure 5: BSDNA(3)

1.2. Hex-Derived Network HDN1(n)
Hex-derived network HDN1(n) have simple structure. Just by adding extra node in every triangular face

of hexagonal mesh. Total number of vertices and edges in HDN1(n) is 9n
2 − 15n+ 7 and 27n2 − 51n+ 24

respectively. We named it mesh network. Mesh network is useful in minimizing the cost of computer
networking and enhancing their performance and reliability.
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Theorem 1.5. For G ∼= HDN1(n) ; n = 2 then dim(G) = 2.

Proof. HDN1(2) is a cycle contains faces in which every face contains C3 as it is not a path so its metric
dimension is not 1 [9] and as it is C3 so we have metric dimension 2.

Theorem 1.6. For G ∼= HDN1(n) ; n ≥ 2 then dim(G) > 2.

Proof. Suppose on contrary HDN(n) has D as its resolving set with cardinality 2. Let D = (c, ai) be a
resolving set.

r
(ai
D

)
=

{
(1, 0), for some i ∈ N,
(1, 2), for some i ∈ N. (1.1)

which is contradiction.
Let D = (c, bi)

r
(ai
D

)
=

{
(1, 1), for some i ∈ N,
(1, 2), for some i ∈ N. (1.2)

which is contradiction.
Let D = (ai, aí) whereai ̸= aí

r
(ai
D

)
=


(0, 2), for some i ∈ N,
(2, 0), for some i ∈ N,
(2, 2), for some i ∈ N

(1.3)

which is contradiction.
Let D = (bj , bj́) wherebi ̸= bí

r
(ai
D

)
=


(1, 1), for some i ∈ N,
(1, 2), for some i ∈ N,
(2, 1), for some i ∈ N,
(2, 2), for some i ∈ N.

(1.4)

which is contradiction.
Let D = (ai, bj)

r
(ai
D

)
=


(0, 1), for some i ∈ N,
(2, 1), for some i ∈ N,
(2, 2), for some i ∈ N.

(1.5)

Similarly, there is no resolving set with two basis element. Hence dim(G) = 2 for n ≥ 2.

Theorem 1.7. For G ∼= HDN1(n) ; n ≥ 2 then dim(G) > 3.

Proof. Suppose on contrary HDN(n) has D as its resolving set with cardinality 3. Let D = (c, ai, aí) be a
resolving set. whereai ̸= aí

r
(ai
D

)
=


(1, 0, 2), for some i ∈ N,
(1, 2, 0), for some i ∈ N,
(1, 2, 2), for some i ∈ N.

(1.6)

which is contradiction.
Let D = (c, bj , bj́) be a resolving set where bj ̸= bj́

r
(ai
D

)
=


(1, 1, 2), for some i ∈ N,
(1, 1, 1), for some i ∈ N,
(1, 2, 1), for some i ∈ N,
(1, 2, 2), for some i ∈ N.

(1.7)
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which is contradiction.
Let D = (c, ai, bj) be a resolving set.

r
(ai
D

)
=


(1, 0, 1), for some i ∈ N,
(1, 2, 1), for some i ∈ N,
(1, 2, 2), for some i ∈ N,
(1, 0, 2), for some i ∈ N.

(1.8)

which is contradiction.
Let W = (ai, aí, bj), where i ̸= í i, í, j ∈ N

r
(am
D

)
= r

(an
D

)
m ̸= n for some m, n ∈ N (1.9)

which is contradiction.
Let W = (ai, bj , bj́), where j ̸= j́ i, j, j́ ∈ N

r
(ao
D

)
= r

(ap
D

)
o ̸= p for some o, p ∈ N (1.10)

which is contradiction.
Let W = (ai, ai′ , ai′′), where i ̸= i′ ̸= i′′ i, í, i′′ ∈ N

r
(as
D

)
= r

(at
D

)
s ̸= t for some s, t ∈ N (1.11)

which is contradiction.
Let W = (bj , bj′ , bj′′), where j ̸= j′ ̸= j′′ j, j́, j′′ ∈ N

r
(au
D

)
= r

(av
D

)
u ̸= v for some u, v ∈ N (1.12)

which is contradiction.
Similarly, there is no resolving set with three basis element. Hence dim(G) > 3 for n ≥ 2.

Figure 6: HDN1(2)

Theorem 1.8. For G ∼= HDN1(n) ; n ≥ 2 then dim(G) > 4.

Proof. Suppose on contrary HDN(n) has W as its resolving set with cardinality 4.
Let W = (c, ai, bj , bj′), where j ̸= j′ i, j, j′ ∈ N

r
(ak
W

)
= r

( al
W

)
k ̸= l for some k, l ∈ N (1.13)
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which is contradiction.
Let W = (c, ai, ai′ , bj), where i ̸= i′ i, i′, j ∈ N

r
(am
W

)
= r

(an
W

)
, m ̸= n for some m, n ∈ N (1.14)

which is contradiction.
Let W = (c, ai, ai′ , ai′′), where i ̸= i′, ̸= i′′ i, i′, i′′ ∈ N

r
( ao
W

)
= r

( ap
W

)
, o ̸= p for some o, p ∈ N (1.15)

which is contradiction.
Let W = (c, bj , bj′ , bj′′), where j ̸= j′, ̸= j′′ j, j′, j′′ ∈ N

r
( aq
W

)
= r

( ar
W

)
, q ̸= r for some q, r ∈ N (1.16)

which is contradiction.
Let W = (ai, bj , bj′ , bj′′), where j ̸= j′, ̸= j′′ i, j, j′, j′′ ∈ N

r
( as
W

)
= r

( at
W

)
, s ̸= t for some s, t ∈ N (1.17)

which is contradiction.
Let W = (ai, ai′ , bj , bj′), where i ̸= i′ and j ̸= j′ i, i′, j, j′ ∈ N

r
(au
W

)
= r

( av
W

)
, u ̸= v for some u, v ∈ N (1.18)

which is contradiction.
Let W = (ai, ai′ , ai′′ , bj), where i ̸= i′ ̸= i′′ i, i′, i′′, j ∈ N

r
(aw
W

)
= r

(ax
W

)
, w ̸= x for some w, x ∈ N (1.19)

which is contradiction.
Let W = (ai, ai′ , ai′′ , ai′′′), where i ̸= i′ ̸= i′′ ̸= i′′′ i, i′, i′′, i′′′ ∈ N

r
( aj
W

)
= r

( az
W

)
, j ̸= z for some j, z ∈ N (1.20)

which is contradiction.
Let W = (bj , bj′ , bj′′ , bj′′′), where j ̸= j′ ̸= j′′ ̸= j′′′ j, j′, j′′, j′′′ ∈ N

r
( as
W

)
= r

( at
W

)
, s ̸= t for some s, t ∈ N (1.21)

which is contradiction.
Similarly, there is no resolving set with three basis element. Hence dim(G) > 4 for n ≥ 2.

Theorem 1.9. For G ∼= HDN1(h); n ≥ 2 then G has metric dimension 5.

Proof. Let W = (V 1
h−1W

1
h−1, X

1
h−1, Y

1
h−1, Z

1
h−1)

then for 1 ≤ s, j ≤ m and m ∈ N
we have

λ

(
a3j−k
s

W

)
=


(h− s, h− 1 + j, h− 2 + s+ j, h− 2 + s+ j, h− 1 + s), k = 2,
(h− s, h− 1 + j, h− 1 + s+ j, h− 1 + s+ j, h− 1 + s), k = 1,
(h− 1− s, h− 1 + j, h− 1 + s+ j, h− 1 + s+ j, h− 1 + s), k = 0.

(1.22)
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λ

(
b3j−k
s

W

)
=


(h− s, h− j, h− 1 + s, h− 2 + s+ j, h− 2 + s+ j), k = 2,
(h− s, h− j, h− 1 + s, h− 1 + s+ j, h− 1 + s+ j), k = 1,
(h− 1− s, h− 1− j, h− 1 + s, h− 1 + s+ j, h− 1 + s+ j), k = 0.

(1.23)

λ

(
c3j−k
s

W

)
=


(h− 1 + j, h− s, h− j, h− 1 + s, h− 2 + s+ j), k = 2,
(h− 1 + j, h− s, h− j, h− 1 + s, h− 1 + s+ j), k = 1,
(h− 1 + j, h− 1− s, h− 1− j, h− 1 + s, h− 1 + s+ j), k = 0.

(1.24)

λ

(
d3j−k
s

W

)
=


(h− 1 + s, h− 2 + s+ j, h− 2 + s+ j, h− 1 + j, h− s), k = 2,
(h− 1 + s, h− 1 + s+ j, h− 1 + s+ j, h− 1 + j, h− j), k = 1,
(h− 1 + s, h− 1 + s+ j, h− 1 + s+ j, h− 1 + j, h− 1− s), k = 0.

(1.25)

λ

(
e3j−k
s

W

)
=


(h− 2 + s+ j, h− 2 + s+ j, h− 1 + s, h− j, h− s), k = 2,
(h− 1 + s+ j, h− 1 + s+ j, h− 1 + s, h− j, h− s), k = 1,
(h− 1 + s+ j, h− 1 + s+ j, h− 1 + s, h− 1− j, h− 1− s), k = 0.

(1.26)

λ

(
f3j−k
s

W

)
=


(h− 2 + s+ j, h− 1 + s, t− j, h− s, h− 1 + j), k = 2,
(h− 1 + s+ j, h− 1 + s, h− j, h− s, h− 1 + j), k = 1,
(h− 1 + s+ j, h− 1 + s, h− 1− j, h− 1− s, h− 1 + j), k = 0.

(1.27)

For j = 1, 1 ≤ s ≤ m, m ∈ N

U j
s = (h− 1, h− 1 + s, h− 1 + s, h− 1 + s, h− 1) (1.28)

V j
s = (h− 1− s, h− 1, h− 1 + s, h− 1 + s, h− 1 + s) (1.29)

W j
s = (h− 1, h− 1− s, h− 1, h− 1 + s, h− 1 + s) (1.30)

Xj
s = (h− 1 + s, h− 1, h− 1− s, h− 1, h− 1 + s) (1.31)

Y j
s = (h− 1 + s, h− 1 + s, h− 1, h− 1− s, h− 1) (1.32)

Zj
s = (h− 1 + s, h− 1 + s, h− 1 + s, h− 1, h− 1− s) (1.33)

For Centre point
O = (h− 1, h− 1, h− 1, h− 1, h− 1) (1.34)

Because Representation of each vertices with respect to W is unique.
⇒ W is resolving set of G and |W | = 5 Because G is not a path so metric dimension of G ∼= HDN1(h) is 5.
where h is numbers of vertices.

1.3. Nylone6,6

Nylone6,6 is a man-made synthetic fiber.Nylone6,6 is a polyamide containing total 12 carbon atoms in
each repeating unit and made by polcondensation of adipic acid methylenediamine.Properties of Nylone6,6
are toughness good appearance,resistance,excellent abration resistant,high tensile strength, resistant to
photo degradation,reduces moisture senstivity,stable in nature and resistant to head.Nylone6,6 used in nylone
rope,hosiery dress socks,swimwear,shorts,track pants and bed spreads.

Theorem 1.10. For G ∼= NL6,6(n); n = 1 then G has metric dimension 2.

Proof. Let W = (V11, V21)

r

(
Vij

W

)
=

{
(i+ j − 2, i+ j − 1) ; i = 1, 1 ≤ j ≤ 3,
(i+ j − 2, i+ j − 3) ; 2 ≤ i ≤ n, x ≤ j ≤ t,

(1.35)

r

(
Vij

W

)
=

{
(i+ j − 2, i+ j − 1) ; 1 ≤ j ≤ 6, 4 ≤ j ≤ 6,
(i+ j − 2, i+ j − 3) ; 7 ≤ i ≤ n+ 1, 4 ≤ j ≤ 6,

(1.36)
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Figure 7: HDN1(4)

r

(
Vij

W

)
=

{
(i+ j − 2, i+ j − 1) ; 2 ≤ j ≤ 7, 7 ≤ j ≤ 9,
(i+ j − 2, i+ j − 3) ; 8 ≤ i ≤ n+ 2, 7 ≤ j ≤ 9,

(1.37)

r

(
Vij

W

)
=

{
(i+ j − 2, i+ j − 1) ; 3 ≤ j ≤ 8, j = 10,
(i+ j − 2, i+ j − 3) ; 9 ≤ i ≤ n+ 2, j = 10,

(1.38)

Because Representation of each vertices with respect to W is unique.
⇒ W is resolving set of G and |W | = 2 Because G is not a path so metric dimension of G ∼= NL6,6(n) is 2.
where n is numbers of vertices.

Figure 8: NL6,6(21)

Conclusion and Open Problems

In the foregoing section we investigated the Polythiophene network PLY(n), Backbone network BSDNA,
Hex-derive network HDN1(n) and Nylone6,6 network then determined the metric dimension of Polythio-
phene network PLY(n) ,Backbone network BSDNA ,Hex-derive network HDN1(n) and Nylone6,6 network.
We have prove that dim(PLY(n)) = 2,
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dim(BSDNA) = 2,
dim(HDN1(n)) = 5,
dim(NL6,6 ) = 2.
We close this section by raising the following open problem.
Open Problem 1. Determine the metric dimension of line graph of Polythiophene network PLY(n).
Open Problem 2. Determine the metric dimension of line graph of Backbone network BSDNA.
Open Problem 3. Determine the metric dimension of line graph of Hex-derive network HDN1(n) for n
subdivision.
Open Problem 4. Determine the metric dimension of line graph of Nylone6,6 network NL6,6.
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[7] Sebő, A., & Tannier, E. (2004). On metric generators of graphs. Mathematics of Operations Research, 29 (2), 383-393. 1
[8] Chartrand, G., Eroh, L., Johnson, M. A., & Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension

of a graph. Discrete Applied Mathematics, 105 (1-3), 99-113. 1
[9] Cameron, P. J., & Designs, J. V. L. (1991). Graphs, Codes and Their Links. London Mathematical Society Student Texts,

22. 1, 1, 1.3, 1.2
[10] Buczkowski, P., Chartrand, G., Poisson, C., & Zhang, P. (2003). On k-dimensional graphs and their bases. Periodica

Mathematica Hungarica, 46 (1), 9-15. 1
[11] S. Khuller, B. Raghavachari, A. Rosenfeld, Localization in graphs, Technical report CS-TR-3326, University of Maryland

at College Park,1994.
[12] Melter, R. A., & Tomescu, I. (1984). Metric bases in digital geometry. Computer vision, graphics, and image Processing,

25 (1), 113-121.
[13] Bermond, J. C., Comellas, F., & Hsu, D. F. (1995). Distributed loop computer-networks: a survey. Journal of parallel

and distributed computing, 24 (1), 2-10.
[14] P.J.Slater. (1988). Dominating and references sets in graphs. Journal of Mathematical Physics, 22 (4), 445-455.
[15] Slater, P. J. (1975). Leaves of trees. Congr. Numer, 14, 549-559.
[16] Feng, T. Y. (1981). A survey of interconnection networks. Computer, 14 (12), 12-27.
[17] Tomescu, I., & Javaid, I. (2007). On the metric dimension of the Jahangir graph. Bulletin mathématique de la Société des
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