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Abstract

The forced SIR system’s synchronization is the main subject of this study. Through the use of several control
techniques, including active control (AC), active backstepping control (ABC), adaptive control (AdC), and
sliding mode control (SMC). We redesigned the three-dimensional system to be autonomous and made it
four-dimensional to ease numerical computations. The system’s phase portrait, Lyapunov exponent graph,
and bifurcation diagram are used to analyze its dynamic properties through numerical simulation. The
effectiveness of the AC, SMC, ABC, and AdC approaches is examined using dynamical error and necessary
control inputs. By contrasting the integral square error with the required control energy measurements, the
best control for synchronization is found.
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1. Introduction

For the past thirty years, chaos synchronization has been extensively studied to understand the behavior
of complex systems and improve predictability. This research has led to significant advancements in various
fields, demonstrating the practical implications of chaotic synchronization beyond theoretical interest. The
idea of synchronization first appeared in the research of [16], who showed that two chaotic trajectories
might converge. Afterward, many investigations have focused on the synchronization of chaotic systems in
different contexts, such as secure communication [1], biological systems [28], finance [12], and engineering
[3]. These studies have revealed the potential applications of chaotic synchronization in enhancing data
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encryption, modeling physiological processes, and designing robust control strategies. Numerous control
techniques are used in chaotic synchronization, including linear control[26, 32], adaptive control (AdC) [9],
sliding mode control (SMC)[4], active backstepping control (ABC)[24], and active control (AC)[14]. These
control techniques are essential for synchronizing chaotic systems, providing stability and robustness. Every
method presents both advantages and disadvantages. They are making it essential to choose the most
appropriate one considering the particular dynamics of the system. This study focuses on one of the most
basic epidemiological models, the SIR model. It was first presented in the work of [13]. Applications of this
model can be found in epidemiology (COVID-19 [5], tuberculosis [20]), immunology, and public health policy.
One of the most fundamental ideas in epidemiological systems is synchronization. When people engage in
synchronization, it can impact the spread of infectious illnesses by speeding up the dissemination of germs.
By focusing preventative efforts on synchronized populations, management techniques may be designed
more effectively with an understanding of synchronization. But there are still things about synchronization
that we don’t fully understand, such as human behavior, societal variables, and the true effect on the
transmission of illness. As well as we can also find this model in other fields, for example: as [15] points
out, the SIR models can be solved precisely on various networks. [10] Provide an example of how the
banking industry uses the SIR model. This model simulates the dynamics and behavior of credit default
swap or CDS, markets. Researchers can better understand these markets’ interconnectedness and potential
risks by applying the SIR model to financial systems. This can help develop strategies to mitigate financial
crises and improve market stability. Many research works focus on the model’s qualitative study, related
to bifurcations and equilibrium points in [25].[29] are curious about whether the forced SIR model has a
periodic solution. [2] sought to determine the degree to which seasonality’s effects affected epidemic models
and analytically demonstrated the presence of topological horseshoes. The Lyapunov spectrum is computed
in [8]’s work; this allows us to determine the fractal dimension, discern between different chaotic states,
and assess the degree of predictability in the system’s attractor appearance. The original nonautonomous
SIR has a series of solutions we can acquire using the homotopy analysis method. In [6] work, whose
attention is focused on the existence of strange attractors on the forced SIR system, [17], they provide a
theoretical optimal control problem of social separation and show that a period-doubling-like phenomenon
could arise. Our focus in this paper is on the forced SIR system’s synchronization by applying the previously
mentioned technique. The three-dimensional system was transformed into a four-dimensional one and then
reconstructed as an autonomous system. The optimal controller for model synchronization is also selected
by a comparative performance analysis. The remainder of the paper follows this structure: In section 1,
the forced SIR system is described, providing a theoretical foundation for the control strategies discussed
in the next sections. Section 2, details the scheme of AC, SMC, ABC, and AdC control methods, offering a
comprehensive overview of each approach’s implementation. Section 3 presents the analysis of each control
method’s performance in comparison to traditional control techniques. Finally, section 4 summarizes the
main conclusions of the work and makes recommendations for future directions for study in the domain of
infectious disease modeling and control.

2. Preliminaries

The error e(t) must tend to zero as t tend to infinity to achieve synchronization. This indicates that the
error system should be stable. As a result, dynamic system theory and control techniques are frequently
used to examine the error system’s stability. This might involve Lyapunov stability assessments.If the error
system is asymptotically stable, then e(t) converges toward zero, thus ensuring that the two chaotic systems
synchronize, there is an extensive literature on the stability theory of differential equations of the third and
fourth order such that[31], [32],[33], and [34] . The definitions listed below are required for this.
We consider the general nonlinear autonomous dynamical system{

ẋ = f(t, x)
x(0) = x0

(2.1)

Where x ∈ Rn et f : Rn → Rn.
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Definition 2.1. The equilibrium point x∗ of system (2.1)is called locally asymptotically stable if

∀ε > 0, ∃δε > 0; ∥x∗ − x0∥ < δε ⇒ lim
t→+∞

∥x(t)− x∗∥ = 0

Definition 2.2. We consider the system ẋ = f(x). The total derivative or orbital derivative of V in the
direction of the vector field f is defined as:

dV

dt
=

∂x

∂t

∂L

∂x
= f(x)

∂L

∂x

Definition 2.3. Let D ⊂ Rn be an open neighborhood of the equilibrium point x∗. Then the function
V : D → Rn, satisfying the following properties:

(i) V is continuously differentiable,

(ii) V > 0 for all x ∈ D − {x∗} and V (x∗) = 0

is called a Lyapunov function.

Theorem 2.4. (Lyapunov theorem)
Suppose that the origin is an equilibrium point of ẋ = f(x) with x ∈ Rn and let V be a Lyapunov function
in a neighborhood D of the origin. If

(i) The orbital derivative V ≤ 0 in D, that is, if V is negative semi-definite in D , the origin is stable,

(ii) V < 0 in D − {0}, that is, if V negative definite in D, then the origin is asymptotically stable,

(iii) V > 0, that is, positive definite in D, the origin is unstable.

3. Main results

3.1. Description of the forced SIR system

The following differential equations describe the SIR system:
Ṡ = α− ϕ(t)SI − λS

İ = ϕ(t)SI − (δ + λ)I

Ṙ = δI − λR.

(3.1)

Where S represents susceptibles, I represents the infected persons, and R represents the recovered persons.
Shown by [7], the transmission rate fluctuates periodically with a period of T .

ϕ(t) = ϕ0(1 + β sin(
2π

T
t)) (3.2)

The birth rate is typically α, the death rate is λ, and the recovery rate is δ. As in λ ≪ δ in actuality, we
assume that α = λ, or that the birth and mortality rates are equal and that the babies are susceptible.
Additionally, we assume that the population is sized such that S + I + R = 1 and has a constant density.
As noted [8], the system (3.1) exhibits chaotic behavior when the parameter values are as follows. α =
0.01, λ = 0.01, δ = 50, ϕ0 = 1510, T = 1, β ∈ [0.0960; 0.1073] and the states of the system take initials values
(S0, I0, R0) = (0.03319, 0.00015, 0.96666). The two equilibria points are E1(1, 0, 0) and E2(0.03; 0.0002.0.97).
The Lyapunov exponents are calculated as Lp1 = 0.2535, Lp2 = 0.0286 and Lp3 = −0.6918.Lp2 > 0, it means
that the SIR system exhibits chaotic behavior.
In the rest of the paper, let’s define S = x1, I = x2, R = x3. Therefore, the system becomes:

ẋ1 = α− ϕ0(1 + β sin(2πT t))x1x2 − λx1
ẋ2 = ϕ0(1 + β sin(2πT t))x1x2 − (δ + λ)x2
ẋ3 = δx2 − λx3.

(3.3)
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Where (x1, x2, x3) are the state variables. We transformed the three-dimensional system into a four-
dimensional one and redesigned it to be autonomous. By letting x4 =

2π
T t which implies ẋ4 =

2π
T . Therefore,

the new system is: 
ẋ1 = α− ϕ0(1 + β sin(x4))x1x2 − λx1
ẋ2 = ϕ0(1 + β sin(x4))x1x2 − (δ + λ)x2
ẋ3 = δx2 − λx3
ẋ4 = 2π

T .

(3.4)

The Lyapunov exponents are calculated as: Lp1 = 0.2063, Lp2 = 0.0209, Lp3 = −0.5368, Lp4 = 0.000

Figure 1: SIR attractor.

Figure 2: Bifurcation diagram of system (3.4).
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Figure 3: The Lyapunov exponents of system (3.4).

3.2. SIR system synchronization applying a variety of control techniques

3.2.1. Active control

The controllable chaotic slave system is:
ẏ1 = α− ϕ0(1 + β sin(y4))y1y2 − λy1 + u1
ẏ2 = ϕ0(1 + β sin(y4))y1y2 − (δ + λ)y2 + u2
ẏ3 = δy2 − λy3 + u3
ẏ4 = 2π

T + u4.

(3.5)

where ui denotes the active control functions that will be found subsequently for i = 1...4. The error
synchronization between systems (3.4) and (3.5).

ė1 = −λe1 − ϕ0(1 + β sin(y4))y1y2 − (1 + β sin(x4))x1x2) + u1
ė2 = (δ + λ)e2 + ϕ0(1 + β sin(y4))y1y2 − (1 + β sin(x4))x1x2) + u2
ė3 = δe2 − λe3 + u3
ė4 = u4.

(3.6)

The active control laws for each ui, where i = 1, 2, 3, 4, are formulated according to the design presented in
[30], ensuring that error dynamics are global asymptotic stable. Define the control laws as follows:

u1 = ϕ0(1 + β sin(y4))y1y2 − ϕ0(1 + β sin(x4))x1x2) + v1
u2 = −ϕ0(1 + β sin(y4))y1y2 − ϕ0(1 + β sin(x4))x1x2) + v2
u3 = −δe2 + v3
u4 = −e4 + v4.

(3.7)

The error system (3.6) become: 
ė1 = −λe1 + v1
ė2 = −(δ + λ)e2 + v2
ė3 = −λe3 + v3
ė4 = −e4 + v4.

(3.8)

The system’s matrix form is:
[ė1 ė2 ė3 ė4]

T = A[e1 e2 e3 e4]
T (3.9)
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and
[v1 v2 v3 v4]

T = B[e1 e2 e3 e4]
T (3.10)

A constant matrix, B is chosen in the active control approach to regulate the error’s dynamics.

B =


a11 b12 c13 d14
a21 b22 c23 d24
a31 b32 c33 d34
a41 b42 c43 d44

 (3.11)

So 
ė1
ė2
ė3
ė4

 =


−λ− a11 b12 c13 d14

a21 −(δ + λ)− b22 c23 d24
a31 b32 −λ− c33 d34
a41 b42 c43 −1− d44




e1
e2
e3
e4

 (3.12)

Several choices of the matrix B can fulfill the error dynamics. Still, One might choose to employ matrix B
that satisfies the Routh-Hurwitz criterion for ensuring stability of the error system near zero. Therefore,

B =


−0.99 0 0 0

0 0 0 0
0 0 −0.99 0
0 0 0 0

 (3.13)

As a result, systems (3.4) and (3.5) are asymptotically synchronized, since the system previously mentioned
(3.12) is asymptotically stable.

Figure 4: Synchronization of system (3.4) and (3.5) using active control .

3.2.2. Sliding mode control

Between systems (3.4) and (3.5), the synchronization error is:
ė1 = −0.01e1 − 1510(1 + β sin(y4))y1y2 − (1 + β sin(x4))x1x2) + u1
ė2 = −50.01e2 + 1510(1 + β sin(y4))y1y2 − (1 + β sin(x4))x1x2) + u2
ė3 = 50e2 − 0.01e3 + u3
ė4 = u4.

(3.14)
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When two systems are synchronized, the problem becomes one of error control. This section will provide a
sliding mode control solution to this issue. The SMC approach requires two phases to bring any systems
that are chaotic into synchronization. The initial stage involves selecting appropriate sliding surfaces, that
guarantee the related sliding mode error dynamics’ stability and cause the synchronization error (3.14) to
converge to zero. Assume the following for the sliding surfaces:

ssm1 = e1 +
∫ t
0 q1e1dτ

ssm2 = e2 +
∫ t
0 q2e2dτ

ssm3 = e3 +
∫ t
0 q3e3dτ

ssm4 = e4 +
∫ t
0 q4e4dτ

(3.15)

In which the variables qi, i = 1, 2, 3, 4 are all positive. In sliding mode, the system meets (3.16) condition.
˙ssm1 = 0
˙ssm2 = 0
˙ssm3 = 0
˙ssm4 = 0

(3.16)

Comparable sliding mode error behaviors are represented in the following way:
ė1 = −q1e1
ė2 = −q2e2
ė3 = −q3e3
ė4 = −q4e4

(3.17)

Let the following Lyapunov function be:

W (e) =
1

2
(e21 + e22 + e23 + e24) (3.18)

Which implies that
Ẇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 (3.19)

Substituting (3.17) into (3.19), we find

Ẇ = −q1e
2
1 − q2e

2
2 − q3e

2
3 − q4e

2
4 (3.20)

Since q1, q2, q3, q4 are positive constants, Ẇ is negative defined.The Lyapunov theory’s stability principle
guarantees the convergence of error dynamics (3.17) by stating that sliding motion on the sliding surface is
stable. Creating a sliding mode control is the second step in ensuring that error routes end up at the sliding
surface ssmi = 0, which establishes an appropriate sliding surface (3.15). The control law proposed below is
meant to guarantee that sliding motion takes place:

u1 = 1510[(1 + β sin(y4))y1y2 − (1 + β sin(x4))x1x2] + (0.01− q1)e1
−k.sign(ssm1)

u2 = −1510[(1 + β sin(y4))y1y2 − (1 + β sin(x4))x1x2] + (50.01− q2)e2
−k.sign(ssm2)

u3 = −50e2 + (0.01− q3)e3 − k.sign(ssm3)
u4 = −q4e4 − k.sign(ssm4)

(3.21)

where k is a positive constant that needs to be determined carefully. The paths of systems (3.4) and (3.5)
approach the sliding surface ssm(t) = 0 according to the controlling rules in equation (3.21). Let be the
ensuing Lyapunov function:

W (e) =
1

2
(s2sm1 + s2sm2 + s2sm3 + s2sm4) (3.22)
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Which implies that
Ẇ = ssm1 ˙ssm1 + ssm2 ˙ssm2 + ssm3 ˙ssm3 + ssm4 ˙ssm4 (3.23)

Ẇ = ssm1(ė1 + q1e1) + ssm2(ė2 + q2e2) + ssm3(ė3 + q3e3) + ssm4(ė4 + q4e4) (3.24)

So
Ẇ ≤ −k|ssm1| − k|ssm2| − k|ssm3| − k|ssm4| (3.25)

One may demonstrate that Ẇ (ssm) < 0 for ssmi(t) ̸= 0 by choosing k > 0. According to Lyapunov
theory’s stability principle, ssm(t) always converges to the sliding surface ssm(t) = 0. Consequently, the
error behaviors are asymptotically stable and converge to zero.

Figure 5: Synchronization of system (3.4) and (3.5) using sliding mode control.

3.2.3. Active backstepping control

In system (3.4) we take α = 0.01, λ = 0.01, δ = 50, ϕ = 1510, T = 1. Performing the variable permuta-
tion: 

x1 = x4
x2 = x3
x3 = x2
x4 = x1

⇒


ẋ1 = ẋ4
ẋ2 = ẋ3
ẋ3 = ẋ3
ẋ4 = ẋ1

(3.26)

Therefore, system (3.4) can be identified as:
ẋ1 = 2π
ẋ2 = −0.01x2 + 50x3
ẋ3 = −50.01x3 + 1510(1 + β sin(x1))x3x4
ẋ4 = 0.01− 0.01x4 − 1510(1 + β sin(x1))x3x4.

(3.27)

So system (3.5) becomes:
ẏ1 = 2π + u1
ẏ2 = −0.01y2 + 50y3 + u2
ẏ3 = −50.01y3 + 1510(1 + β sin(y1))y3y4 + u3
ẏ4 = 0.01− 0.01y4 − 1510(1 + β sin(y1))y3y4 + u4.

(3.28)
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In this case, the feedback control instructions u1, u2, u3, u4 need to be found by backstepping. The error
system is: 

ė1 = u1
ė2 = −0.01e2 + 50e3 + u2
ė3 = −50.01e3 + 1510((1 + β sin(y1))y3y4 − (1 + β sin(x1))x3x4) + u3
ė4 = −0.01e4 − 1510((1 + β sin(y1))y3y4 − (1 + β sin(x1))x3x4) + u4.

(3.29)

Initially, feedback control is used to restructure the system (3.29), making it conducive for the implementa-
tion of backstepping control. Let’s begin by examining the feedback control law:

u1 = −e1 − e2
u2 = −0.99e2
u3 = 0.01e3 − 1510((1 + ε sin(y1))y3y4 − (1 + ε sin(x1))x3x4) + e4
u4 = −0.99e4 + 1510((1 + ε sin(y1))y3y4 − (1 + ε sin(x1))x3x4) + v.

(3.30)

Here, v stands for a command to be determined for feedback control. With (3.30) substituted for (3.29),
the form that follows may be used to receive the updated system:

ė1 = −e1 − e2
ė2 = −e2 + 50e3
ė3 = −50e3 + e4
ė4 = −e4 + v.

(3.31)

We initiate the process with the Lyapunov function:

W1(z1) =
1

2
z21 (3.32)

where z1 = e1, we obtain
Ẇ1(z1) = z1ż1 = z1(−e1 − e2) = −z21 − z1e2 (3.33)

Next, we define
z2 = −e2 (3.34)

Using (3.34), we can express (3.33) as
Ẇ1(z1) = −z21 + z1z2 (3.35)

We define the second Lyapunov function:

W2(z1, z2) = W1(z1) +
1

2
z22 (3.36)

We obtain
Ẇ2(z1, z2) = −z21 + z1z2 + z2ż2 = −z21 − z22 + w2(w1 + w2 + ẇ2) (3.37)

We define
z3 = z1 + z2 + ż2 = e1 − e2 − (−e2 + 50e3) = e1 − 50e3 (3.38)

Thus, (3.37) becomes
Ẇ2(z1, z2) = −z21 − z22 + z2z3 (3.39)

We define the third Lyapunov function:

W3(z1, z2, z3) = W2(z1, z2) +
1

2
z23 (3.40)

We get
Ẇ3(z1, z2, z3) = −z21 − z22 + z2z3 + z3ż3 = −z21 − z22 − z23 + z3(z2 + z3 + ż3) (3.41)
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We define

z4 = z2 + z3 + ż3 = −e2 + e1 − 50e3 + ė1 − 50ė3 = −e2 + e1 − 50e3 − e1 − e2
+2500e3 − 50e4 = −2e2 + 2450e3 − 50e4

(3.42)

Hence, (3.41) becomes
Ẇ3(z1, z2, z3) = −z21 − z22 − z23 + z3z4 (3.43)

We define the fourth Lyapunov function:

W4(z1, z2, z3, z4) = W3(z1, z2, z3) +
1

2
z24 (3.44)

We obtain
Ẇ4(z1, z2, z3, z4) = −z21 − z22 − z23 − z24 + z4(z3 + z4 + ż4) (3.45)

We set
Z = z3 + z4 + ż4 = e1 − 50e3 − 2e2 + 2450e3 − 50e4 − 2ė2 + 2450ė3 − 50ė4

= e1 − 50e3 − 2e2 + 2450e3 − 50e4 − 2(−e2 + 50e3) + 2450(−50e3 + e4)
−50(−e4 + v) = e1 − 120200e3 + 2450e4 − 50v

(3.46)

We define v as:
v = 0.02e1 − 2404e3 + 49e4 +Qz4 (3.47)

when a positive constant Q > 0 is present. We obtain Z = −50Qz4 by substituting (3.47) into (3.46).
Consequently, we can simplify equation (3.45) as follows:

Ẇ4(z1, z2, z3, z4) = −z21 − z22 − z23 − (1 + 50Q)z24 (3.48)

This quadratic equation is negatively definite. Therefore, the Lyapunov theory’s stability principle ensures
global and exponential stability of the system (3.31). The control laws in the active backstepping method
are then defined as:

u1 = −e1 − e2
u2 = −0.99e2
u3 = 0.01e3 − 1510((1 + β sin(y1))y3y4 − (1 + β sin(x1))x3x4) + e4
u4 = −0.99e4 + 1510((1 + β sin(y1))y3y4 − (1 + β sin(x1))x3x4) + 0.02e1

−2404e3 + 49e4 − 50Qz4.

(3.49)

with z4 = −2e2 + 2450e3 − 50e4,

3.2.4. Adaptative control

Using unknown parameters, we rewrite systems (3.4) and (3.5) in the way that follows:{
ẋ = h(x) +H(x)ξ
ẏ = h(y) +H(y)ξ + U.

(3.50)

where
ẋ =

(
ẋ1 ẋ2 ẋ3 ẋ4

)T
(3.51)

ẏ =
(
ẏ1 ẏ2 ẏ3 ẏ4

)T
(3.52)

and
h(x) = h(y) =

(
0 0 0 2π

)T
(3.53)

H(x) =


1 −x1 −(1 + β sin(x4))x1x2 −ϕ sin(x4)x1x2 0
0 −x2 (1 + β sin(x4))x1x2 ϕ sin(x4)x1x2 −x2
0 −x3 0 0 x2
0 0 0 0 0

 (3.54)
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Figure 6: Synchronization of system (3.4) and (3.5) using active backstepping control.

H(y) =


1 −y1 −(1 + β sin(y4))y1y2 −ϕ sin(y4)y1y2 0
0 −y2 (1 + β sin(y4))y1y2 ϕ sin(y4)y1y2 −y2
0 −y3 0 0 y2
0 0 0 0 0

 (3.55)

ξ =
(
α λ ϕ β δ

)T
;U =

(
u1 u2 u3 u4

)T
(3.56)

The error in complete synchronization between systems (3.4) and (3.5) is given by:

ėi = (H(y)−H(x))ξ + U (3.57)

We define adaptative control as:
U = (H(x)−H(y))ξ̃ − ke (3.58)

where
ξ̃ =

(
α̃ λ̃ ϕ̃ β̃ δ̃

)T
, e =

(
e1 e2 e3 e4.

)T
(3.59)

and k = diag(ki) ∈ R4×4, ki > 0 .So

u1 = λ̃e1 + ϕ̃((1 + β sin(y4))y1y2 − (1 + β sin(x4))x1x2) + ϕβ̃(sin(y4)y1y2
− sin(x4)x1x2)− k1e1

u2 = λ̃e2 − ϕ̃((1 + β sin(y4))y1y2 − (1 + β sin(x4))x1x2)− ϕβ̃(sin(y4)y1y2
− sin(x4)x1x2) + δ̃e2 − k2e2

u3 = λ̃e3 − δ̃e2 − k3e3
u4 = −k4e4

(3.60)

According to the parameter estimation adjustment laws below:

˙̃
ξ = [H(y)−H(x)]T e+ η(ξ − ξ̃) (3.61)

hence 

˙̃α = η(α− α̃)
˙̃
λ = −(e21 + e22 + e23) + η(λ− λ̃)
˙̃
ϕ = (e2 − e1)((1 + β sin(y4))y1y2(1 + β sin(x4))x1x2) + η(ϕ− ϕ̃)
˙̃
β = ϕ(e2 − e1)(sin(y4)y1y2 − sin(x4)x1x2) + η(β − β̃)
˙̃
δ = −e22 + e2e3 + η(δ − δ̃)

(3.62)
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where
η = diag(ηi), ηi > 0, i = 1...5,

Let’s define Lyapunov’s function as follows:

W (e) = e21 + e22 + e23 + e24 + e2α + e2λ + e2ϕ + e2β + e2δ (3.63)

With the choice of parameters (3.62). Ẇ is a function with a negative definite. Consequently, the error
dynamics (3.57) show global asymptotic stability according to Lyapunov stability theory.

Figure 7: Synchronization of system (3.4) and (3.5) using adaptative control.

3.3. Comparing synchronization control methods

Based on the work of [18]. To synchronize the forced SIR system, the efficiency of the AC, SMC, ABC,
and AdC techniques are compared. For comparison, the necessary control energy UE and the integral square
error IE are taken into account. This is because the relationship between error dynamics and control input
can vary greatly depending on the specific system being analyzed. Therefore, it is important to carefully
consider all factors before determining the most effective control strategy. Consequently, I = g(IE,UE)
defines an appropriate performance index as a function of IE and UE. which have the following definitions:
IE =

∫∞
0 e2(t)dt , UE =

∫ +∞
−∞ |u|2dt, where e is the error vecteur and u is the input for control. Three

distinct efficiency indicator samples are given for comparison. These are:
Case 1: When IE and UE have identical weight.

I = g(IE,UE) =
n∑

k=1

(
1

2
IEk +

1

2
UEk). (3.64)

Case 2: If IE and UE have weight of 40% and 60%, respectively.

I = g(IE,UE) =
n∑

k=1

(
2

5
IEk +

3

5
UEk). (3.65)

Case 3: When IE has a 60% weight and UE has a 40% weight.

I = g(IE,UE) =
n∑

k=1

(
3

5
IEk +

2

5
UEk) (3.66)



A. Derbouche, N. Hamri, and W. Laouira, Journal of Prime Research in Mathematics, 20(1) (2024), 43–57 55

Table 1: Comparaison of performance index for the fourth control techniques first case

Initial conditions AC SMC ABC AdC

0.0345 0.0002 1 5 4 8.05 15.75 8
0.0445 0.0102 1.01 5.01 4.02 8.17 1.2 ×103 8.66
0.0645 0.0302 1.03 5.03 4.09 8.72 8.9 ×103 12.82
0.0845 0.0502 1.05 5.05 4.26 10.25 2.5 ×104 19.84
0.1045 0.0702 1.07 5.07 4.62 14 5.7 ×104 32.26
0.1245 0.0902 1.09 5.09 5.31 22.3 1.2 ×105 54.76
0.1445 0.1102 1.11 5.11 6.50 39.69 2.2 ×105 92.1
0.1645 0.1302 1.13 5.13 8.4 75.16 3.9 ×105 194.25
0.1845 0.1502 1.15 5.15 11.24 142.12 6.5 ×105 375.82
0.2045 0.1702 1.17 5.17 15.32 304.79 106 545.6

Table 2: Comparaison of performance index for the fourth control techniques second case

Initial conditions AC SMC ABC AdC

0.0345 0.0002 1 5 3.20 8.07 17.31 8
0.0445 0.0102 1.01 5.01 3.22 8.20 1.4 ×103 8.79
0.0645 0.0302 1.03 5.03 3.29 8.85 1.1 ×104 13.76
0.0845 0.0502 1.05 5.05 3.47 10.67 3 ×104 22.16
0.1045 0.0702 1.07 5.07 3.89 15.15 6.8 ×104 37.05
0.1245 0.0902 1.09 5.09 4.70 25.1 1.4 ×105 64.03
0.1445 0.1102 1.11 5.11 6.11 45.94 2.6 ×105 108.82
0.1645 0.1302 1.13 5.13 8.37 88.44 4.6 ×105 231.38
0.1845 0.1502 1.15 5.15 11.76 176.03 7.8 ×105 427.66
0.2045 0.1702 1.17 5.17 16.64 364 1.2 ×106 652.98

Table 3: Comparaison of performance index for the fourth control techniques third case

Initial conditions AC SMC ABC AdC

0.0345 0.0002 1 5 4.80 8.03 14.18 8
0.0445 0.0102 1.01 5.01 4.83 8.13 928.48 8.54
0.0645 0.0302 1.03 5.03 4.89 8.59 7049.7 11.88
0.0845 0.0502 1.05 5.05 5 9.83 2 ×104 17.51
0.1045 0.0702 1.07 5.07 5.22 12.85 4.5 ×104 27.47
0.1245 0.0902 1.09 5.09 5.66 19.51 9.2 ×104 45.48
0.1445 0.1102 1.11 5.11 6.89 33.43 1.7 ×105 75.37
0.1645 0.1302 1.13 5.13 8.43 61.83 3.1 ×105 157.11
0.1845 0.1502 1.15 5.15 10.72 120.21 5.2 ×105 287.99
0.2045 0.1702 1.17 5.17 14 245.56 8.3 ×105 438.23

The index below k is the summation index ranging from 1 to 4, Thus, for k = 1, . . . , 4, (IEk) and (UEk)
are calculated.
Chaotic systems are characterized by their sensitivity to initial conditions. we take ten different conditions,
and we notice that the synchronization is complete and also according to the table the best control for the
system whatever the index is the active control

4. Conclusion

Using well-known control strategies like Active Control (AC), Sliding Mode Control (SMC), Active
Backstepping (ABC), and Adaptive Control (AdC) in conjunction with numerical simulations, SIR system
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synchronization was accomplished in this work. The control line for this system, which is the active control
that frequently permits precise and fine-tuning system parameters and might be essential for attaining
precise synchronization across systems, can be found by employing a well-defined performance index, can
enable quicker reaction times, which is extremely important for our system since synchronization must be
achieved soon further restate that the SMC comes in second, followed by AdC. One promising direction for
future research is to explore the effectiveness of hybrid control strategies on synchronization dynamics in
epidemiological systems. For example, combining Active Control with Sliding Mode Control or Adaptive
Control could leverage the strengths of each approach, potentially leading to even more precise and robust
synchronization. Additionally, studying the impact of these hybrid strategies in various scenarios, such as
different population sizes or varying transmission rates, could provide deeper insights into their practical
applications. Another area worth investigating is the integration of real-time data from ongoing epidemics
to dynamically adjust the control parameters, thereby enhancing the responsiveness and accuracy of the
synchronization process. Finally, examining the interactions between epidemiological systems and other
complex networks, such as transportation or social networks, could offer valuable perspectives on managing
disease spread more effectively.
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