Algebraic integers of pure sextic extensions
Keywords:
Algebraic number field, algebraic number integer, pure sextic extensionAbstract
Let K = Q(θ), where θ = √6 d, be a pure sextic field with d ̸= 1 a square free integer. In this paper, we characterize completely whether {1, θ, . . . , θ5} is an integral basis of K or do not. When d ̸≡ ±1, ±17, ±10, −15, −11, −7, −3, 5, 13(mod 36) we prove that K has a power integral basis. Furthermore, for the other cases we present an integral basis.
Downloads
Download data is not yet available.
Downloads
Published
2022-12-31
Issue
Section
Regular
How to Cite
Algebraic integers of pure sextic extensions. (2022). Journal of Prime Research in Mathematics, 18(2), 112 – 124. https://jprm.sms.edu.pk/index.php/jprm/article/view/201