New Results on Singularly Perturbed Fractional KdV and KdV-Burgers Equations

Authors

  • Zoubir Dahmani Laboratory of Discrete and Applied Mathematical Analysis and Operations Research (LAMDA-RO), University of Blida 1, 09000, Blida, Algeria.
  • Iqbal Jebril Department of Mathematics, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan

Abstract

This paper investigates traveling wave solutions for singularly perturbed fractional KdV equation and KdV– Burgers equation with a linear confinement term using Caputo fractional derivatives of order α ∈ (3, 4). Using the tanh method, we first derive exact solutions for the classical cases, recovering the well-known hyperbolic secant soliton for the KdV equation and a tanh-profile solution for the KdV–Burgers equation with confinement term. For the singularly perturbed cases, we employ matched asymptotic expansions to construct solutions that capture both the localized wave core and the algebraic decay in the outer region induced by the fractional derivatives. The inner case retains the classical soliton structure, and the outer solution exhibits a power-law tail of order ξ ^(3−α), reflecting the nonlocal effects of fractional derivatives. Our main results reveal that the fractional perturbation modifies the wave’s decay behavior, giving rise to nonlocal effects absent from the classical formulation.

Downloads

Download data is not yet available.

References

[1] R. Akhter and M. S. Alquran, “Fractional KdV–Burgers equation via modified residual power series method,” Alex. Eng. J., vol. 59, pp. 99–108, 2020. 1

[2] M. Akbarzade and S. Soleimani, “Approximate analytical solutions of KdV–Burgers equations using an iterative method,” Int. J. Numer. Methods Heat Fluid Flow, vol. 26, no. 1, pp. 80–90, 2016. 1

[3] M. M. AlBaidani, F. Aljuaydi, N. S. Alharthi, A. Khan, and A. H. Ganie, “Study of fractional forced KdV equation with Caputo–Fabrizio and Atangana–Baleanu–Caputo differential operators,” AIP Advances, vol. 14, no. 1, p. 015340, Jan. 2024. 1

[4] N. S. Alharthi, “Dynamical and computational analysis of fractional Korteweg–de Vries–Burgers and Sawada Kotera equations in terms of Caputo fractional derivative,” Fractal and Fractional, vol. 9, no. 411, pp. 1–22, 2025. 1

[5] I. M. Batiha, M. S. Hijazi, A. Hioual, A. Ouannas, M. Odeh, and S. Momani, “Stability analysis and numerical simulations of a discrete-time epidemic model,” *Partial Differential Equations in Applied Mathematics*, vol. 13, p. 101118, 2025. 1

[6] O. K. Benhamouda, M. E. Smakdji, A. Derbazi, A. Boudjedour, M. Dalah, K. Zennir, and A. Zarour, “On stability and convergence of a fractional convection reaction-diffusion model,” Nonlinear Dynamics and Systems Theory, vol. 24, no. 6, pp. 575–581, 2024. 1

[7] J. L. Bona, P. E. Souganidis, and W. A. Strauss, “Stability and instability of solitary waves of Korteweg–de Vries type,” Proc. R. Soc. Lond. A, vol. 411, no. 1841, pp. 395–412, 1987. 2.4

[8] K. W. Chang and F. A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications. Springer Verlag, 1984. 2.3

[9] W. Eckhaus, Asymptotic Analysis of Singular Perturbations. Amsterdam, Netherlands: North-Holland, 1979. 1

[10] A. El-Ajou, O. Abu Arqub, and S. Momani, “Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: A new iterative algorithm,” J. Comput. Phys., vol. 293, pp. 81–95, 2015. 1

[11] S. A. Elwakil, “Exact solutions for the KdV–Burgers equation using the tanh-function method,” Appl. Math. Comput., vol. 131, pp. 517–529, 2002. 1

[12] S. Hakkaev and K. S¸amdanlı, “On the spectral stability of periodic waves of the dispersive systems of modified KdV equations,” Nonlinear Anal. Real World Appl., vol. 82, p. 104250, Apr. 2025. 2.4

[13] M. Jleli and B. Samet, “Analysis of a fractional KdV–Burgers equation and some exact solutions,” Electron. J. Differ. Equ., vol. 2017, no. 73, pp. 1–10, 2017. 1

[14] M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun, “Spectral stability of periodic wave trains of the Korteweg–de Vries/Kuramoto–Sivashinsky equation in the Korteweg–de Vries limit,” Trans. Amer. Math. Soc., vol. 367, no. 3, pp. 2159–2212, Mar. 2015. 2.4

[15] V. I. Karpman, “Soliton evolution in the presence of perturbation,” Physica Scripta, vol. 20, no. 3–4, pp. 462–478, 1979. 2.3

[16] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics. New York: Springer-Verlag, 1981. 1

[17] A. Lamamri, Y. Gouari, Z. Dahmani, M. Rakah, and M. Z. Sarıkaya, “A class of nonlinear systems with new boundary conditions: existence of solutions, stability and travelling waves,” Math. Model. Anal., vol. 30, no. 2, pp. 233–253, 2025. 1

[18] M. B. A. Mansour, “Travelling wave solutions for a singularly perturbed Burgers–KdV equation,” Pramana J. Phys., vol. 73, no. 5, pp. 799–806, 2009. 1

[19] A. H. Nayfeh, Introduction to Perturbation Techniques. New York: Wiley, 1981. 1

[20] R. E. O’Malley, Asymptotic Analysis and Singular Perturbation Theory. Univ. of California, Davis, Lecture Notes, 2004. 2.2, 2.3

[21] R. E. O’Malley, “Singular perturbation methods for ordinary differential equations,” Appl. Math. Sci., vol. 89, Springer, New York, 2012. 2.3

[22] C. Pawar, K. Takale, and S. Gaikwad, “Comparative study of solutions of fractional order mixed KdV–Burgers equation,” Indian J. Sci. Technol., vol. 17, no. 25, pp. 2591–2598, 2024. 1

[23] I. Podlubny, Fractional Differential Equations. San Diego, CA: Academic Press, 1999. 1

[24] G. Schneider, “Error estimates for the Ginzburg-Landau approximation,” Z. Angew. Math. Phys., vol. 45, pp. 433 457, 1994. 2.3

[25] K. Shehzada, A. Ullah, S. Saifullah, and A. Akg¨ul, “Fractional generalized perturbed KdV equation with a power law kernel: A computational study,” Results Control Optim., vol. 12, p. 100298, 2023. 1

[26] M. Taniguchi, “A remark on singular perturbation methods via the Lyapunov–Schmidt reduction,” Publ. RIMS, Kyoto Univ., vol. 31, pp. 1001–1010, 1995. 2.3

[27] H. Thabet, S. Kendre, and J. Peters, “Travelling wave solutions for fractional Korteweg–de Vries equations via an approximate-analytical method,” AIMS Math., vol. 4, no. 4, pp. 1203–1222, Aug. 2019. 1

[28] A. N. Tikhonov, “Systems of differential equations containing small parameters in the derivatives,” Mat. Sb., vol. 31(73), no. 3, pp. 575–586, 1952. 2.3

[29] M. Wadati, “Exact solution of the modified Korteweg–de Vries equation,” J. Phys. Soc. Jpn., vol. 32, no. 6, pp. 1681–1687, 1972. 1

[30] G. B. Whitham, Linear and Nonlinear Waves. New York: Wiley, 1984.

Downloads

Published

2025-09-30

How to Cite

New Results on Singularly Perturbed Fractional KdV and KdV-Burgers Equations. (2025). Journal of Prime Research in Mathematics, 21(2), 25-36. https://jprm.sms.edu.pk/index.php/jprm/article/view/278