Stochastic Differential Equations based on Perona-Malik Functions for Image Denoising

Authors

  • Radhia Halilou Mathematical Modeling and Numerical Simulation Laboratory, Faculty of Sciences, Badji Mokhtar University, P.O. Box 12, Annaba 23000-Algeria.
  • Fatma Zohra Nouri Mathematical Modeling and Numerical Simulation Laboratory, Faculty of Sciences, Badji Mokhtar University, P.O. Box 12, Annaba 23000-Algeria.

Keywords:

Stochastic Differential Equations, Analysis and Well-Posedness, Numerical Methods, Image Processing.

Abstract

 The aim of this work is to propose models based on stochastic differential equations with a good choice for  both diffusion and drift terms to solve an image restoration problem. These proposed models are based on  Barbu and Borkowski stochastic equations, where we exploit the Perona-Malik functions for the drift and diffusion terms. First, we show the derived model’s well posedness; then we present the related numerical results. These models give satisfactory experimental results in removing noise, improving and preserving the image structure compare to other well known approaches, such as [1], [2] and [4].

Downloads

Download data is not yet available.

Author Biography

  • Fatma Zohra Nouri, Mathematical Modeling and Numerical Simulation Laboratory, Faculty of Sciences, Badji Mokhtar University, P.O. Box 12, Annaba 23000-Algeria.

    NA

References

[1] T. Barbu, G. Da Prato and L. Tubaro, Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space II, Annales de l’IHP Probabilit´es et Statistiques, (2011) 699-724. (document), 1

[2] T. Barbu and A. Favini, Novel stochastic differential model for image restoration, Proceedings of the Romanian Academy-Series A: Mathematics, Physics, Technical Sciences, Information Science, (2016) 109-116. (document), 1, 2.1, 4

[3] M. Benseghir and F.Z. Nouri, A new partial differential equation for image inpainting, Bol. Soc. Paran. Mat. (2021) 137-155. 5

[4] D. Borkowski and K.J. Borkowska, Image restoration using anisotopic stochastic diffusion collaborated with non local means, In IFIP Internatinal Conference on Computer Information Systems and Industial Management, Krakow, Poland (2013) 177-189. (document), 1, 2.2

[5] D. Borkowski, Forward and backward filtering based on backward Stochastic differential equations, Inverse Problems and Imaging, (2016) 305-325. 1

[6] D. Borkowski and K.J. Borkowska, Image denoising using backward stochastic differential equations, Advances in Intelligent Systems and Computing, (2017) 185-194. 1

[7] K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3D transform-domain collaborative filtering, IEEE Transactions on Image Processing, (2007), 2080-2095. 1

[8] X. Descombes and E. Zhizhina, Image denoising using stochastic differential equations, INRIA, (2003), 1-30. 1

[9] X. Descombes,M. Lebellego and E. Zhizhina, Image deconvolution using a stochastic differential equation approach, In Proceedings of The Second International on Computer Vision Theory and Applications, (2007) 157-164. 1

[10] M. Diwakar and M. Kumar, A review on CT image noise and its denoising, ELSEVIER, Biomedical Signal Processing and Control, (2018) 73-88. 1

[11] L. Fan, F. Zhang, H. Fan and C. Zhang, Brief review of image denoising techniques, Visual Computing for Industry, Biomedicine, and Art, Springer Open, (2019), 1-12. 1

[12] H.T. Huynh,V.S. Lai, I. Soumar´e, Stochastic simulation and applications in finance with matlab, John Wiley & Sonc, 2008. 1

[13] Y. Jiang Li, J. Zhang and M. Wang, Improved BM3D denoising method, IET Image Processing, (2017) 1197-1204. 1

[14] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi, Jr, Conformal curvature flows: From phase transitions to active vision. Arch. Rational Mech. Anal. (1996) 275-301. 1

[15] Jan J. Koendrink, The structure of images, Biol. Cybern (1984) 363-370. 1

[16] S. Kumar Maji, R.K. Thakur and H.M. Yahia, SAR image denoising based on multifractal feature analysis and TV regularisation, IET Image Processing, (2020), 1-10. 1

[17] J.M. Morel and Rudin-Osher-Fatemi, Total variation denoising using split bregman, Image Processing On Line, Pascal Getreuer, (2012) 74-95. 1

[18] F.Z. Nouri, Uniqueness and Existence Results for a partial Differential Equation in Image Inpainting, Commun. Optim. Theory 2020 (2020) Article ID7 1-17. https://doi.org/10.23952/cot.2020. 1, 5

[19] B. Øksendal, Stochastic differential equations, Universitext, Springer, (Sixth Edition), 2013. 1, 3.1

[20] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Machine Intell., (1990) 629-639. 1

[21] E.H. Soubari, Traitement d’images par transformer de Fourier optique, Departement Des Arts Graphiques, B.P. 6009-45060 Orl´eans C´edex, (1979), 1-40. 1

[22] N. Touzi, EDS retrogrades et EDP non lineaires, Conf´erence de la SMAI sur l’optimisation et la d´ecision, Ecole Polytechnique, (2007). 1

[23] S.J. Walker, Fourier analysis and wavelet analysis, Notices of The AMS, (1997) 658-670. 1

[24] Y. Wang, G. Wei Wei and S. Yang, Partial differential equation tronsform variational formulation and Fourier Analysis, Int. J. Numer. Meth. Biomed. Engng. (2011), 1-25. 1

[25] J. Weickert, Anisotropic diffusion in image processing, Teubner, (1998). 1

[26] J. Weickert, T. Brox, B. Burgeth and Pavel Mr`azek, Nonlinear structure tensors, Image and Vision Computing, (2006) 41-55. 1

[27] J. Weickert, T. Brox, Diffusion and regularization of vector-and matrix-valued images, Saarbrucken (2002) 251-268.

Downloads

Published

2025-10-22

How to Cite

Stochastic Differential Equations based on Perona-Malik Functions for Image Denoising. (2025). Journal of Prime Research in Mathematics, 21(2), 140-152. https://jprm.sms.edu.pk/index.php/jprm/article/view/353