Connective eccentricity index of certain path-thorn graphs
Keywords:
Distance-based index, Eccentricity, Path-thorn graphAbstract
Let GG be a simple connected graph with V(G)V(G) and E(G)E(G) as the vertex set and edge set respectively. A topological index is a numeric quantity by which we can characterize the whole structure of a molecular graph or a network to predict the physical or chemical activities of the involved chemical compounds in the molecular graph or network. The connective eccentricity index of the graph GG is defined as ξce(G)=∑v∈Gd(v)e(v)ξce(G)=∑v∈Gd(v)e(v), where d(v)d(v) and e(v)e(v) denote the degree and eccentricity of the vertex v∈Gv∈G respectively. In this paper, we compute the connective eccentricity index of the various families of the path-thorn graphs and present the obtained results with the help of suitable mathematical expressions consisting on various summations. More precisely, the computed results are general extensions of the some known results.Downloads
Download data is not yet available.
Downloads
Published
2018-12-31
Issue
Section
Regular
How to Cite
Connective eccentricity index of certain path-thorn graphs. (2018). Journal of Prime Research in Mathematics, 14(1), 87 – 99. https://jprm.sms.edu.pk/index.php/jprm/article/view/143