Limit Cycles for a Class of Planar Differential Systems with a Degenerate Singular Point
Abstract
This paper investigates a class of planar differential systems characterized by a degenerate singular point. We demonstrate that this class is Liouville integrable and explicitly derive a first integral using an Abel equation of the second kind. Moreover, through an analysis based on the Poincaré return map, we establish the existence of two non-algebraic limit cycles or a single algebraic limit cycle near the degenerate point. The occurrence of these limit cycles is shown to depend sensitively on the system's parameters.
Downloads
References
[1] K.I.T. Al-Dosary, Non-algebraic limit cycles for parametrized planar polynomial systems, Int. J. Math 18 (2007)179-189.
[2] A. Bendjeddou, A. Berbache and A. Kina, Limit Cycles for a Class of Polynomial Differential SystemsVia Averaging
Theory, J.Sib. Fed. Univ. Math. Phys 12(2019)145–159. 1
[3] L. Bougoffa, New exact general solutions of Abel equation of the second kind, Appl Math Comput 21(2010) 689-691. 1
[4] C, Christopher., C, Li., Limit cycles of differential equations, Advanced Courses in Mathematics, CRM Barcelona,
Birkhauser Verlag, Basel 2007. 2
[5] A. Gasull, H.Giacomini and J. Torregrosa, Explicit non-algebraic limit cycles for polynomial systems, J. Comput. Appl.
Math 200(2007)448-457. 1
[6] A. Gasull, P. Santana, On a variant of Hilbert’s 16th problem, Nonlinearity 37(2024) 125012. 1
[7] J. Gin´e, M. Grau and J. Llibre, Criteria on the existence of limit cycles in planar polynomial differential systems, Expo.
Math 40(2022)1049-1083. 1
[8] J. Gin´e, J. Llibre, Integrability and algebraic limit cycles for polynomial differential systems with homogeneous nonlinearities, J. Differential Equations 197(2004)147-161. 1
[9] J. Gin´e, J. Llibre, Integrability, degenerate centers, and limit cycles for a class of polynomial differential systems, Comput. Math. Appl 51(2006)1453-1462. 1
[10] H. Giacomini, J. Gin´e and M. Grau, Integrability of planar polynomial differential systems through linear differential equations, Rocky Mountain J. Math 36(2006)457–86. 1
[11] J. Gin´e, M. Grau, Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations,
Nonlinearity 19(2006)1939-1950. 1
[12] J. Gin´e, M. Grau, A note on relaxation oscillator with exact limit cycles, J.Math. Anal. and Appl 324(2006) 739–745. 1
[13] D. Hilbert, Mathematische Probleme, Lecture, Second Internat, Congr. Math. (Paris, 1900), Nachr. Ges. Wiss. G¨ottingen Math. Phys. KL.; Englishtransl., Bull. Amer. Math. Soc (1900)253–297 1
[14] E. Kamke, Differentialgleichungen, L¨osungsmethoden und L¨osungen, vol. 1, B.G. Teubner, Stuttgard 1977. 1
[15] A. Kina, A. Berbache and A. Bendjeddou, A class of differential systems of even degree with exact non-algebraic limit cycles, Stud. Univ. Babes-Bolyai Math 65(2020) 403-410. 1
[16] J. Llibre, C. Valls, Polynomial differential systems with hyperbolic limit cycles. J. Geom. Phys 194(2023) 104983.
[17] K. Odani, The limit cycle of the van der Pol equation is not algebraic, J. Differential Equations 115(1995)146-152. 1
[18] L.Perko, Differential equations and dynamical systems, Third edition. Texts in Applied Mathematics, 7. Springer Verlag, New York, 2001. 1
[19] A.D. Polyanin, V.F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press, New York
1999. 1, 2 2
[20] S. Smale, Mathematical Problems for the Next Century, Math. Intell 20(1998) 7–15. 1
[21] B. Sang, Q. Wang, The center-focus problem and bifurcation of limit cycles in a class of 7th-degree polynomial systems. system, J. Appl. Anal. Comput 6(2016)817-826. 1
[22] M. F. Singer, Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc 333(1990)673-688.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Abdelkrim Kna, Ahmed bendjeddou, Omar Chaalal, Akca Haydar

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.