Insights on the Homogeneous 3-local representations of the Twin Groups
Keywords:
Twin Groups, Braid Groups, Irreducibility, FaithfulnessAbstract
We provide a complete classification of the homogeneous 3-local representations of the twin group T_n, the virtual twin group VT_n, and the welded twin group WT_n, for all n\geq 4. Beyond this classification, we examine the main characteristics of these representations, particularly their irreducibility and faithfulness. More deeply, we show that all such representations are reducible, and most of them are unfaithful. Also, we find necessary and sufficient conditions of the first two types of the classified representations of T_n to be irreducible in the case n=4. The obtained results provide insights into the algebraic structure of these three groups.
Downloads
References
[1] E. Artin, Theorie der z¨opfe, Abhandlungen Hamburg, 4, 47-72, (1926). 2, 2.1
[2] V. Bardakov and P. Bellingeri, On representation of braids as automorphisms of free groups and corresponding linear representations, Knot Theory and Its Applications, Contemp. Math., Amer. Math. Soc., Providence, 670, (2016), 285-298. 1, 2, 2.8
[3] V. Bardakov, M. Singh, and A. Vesnin, Structural aspects of twin and pure twin groups, Geometriae Dedicata, 203 (2019), 135-154. 1, 2, 2.3, 2, 2.4
[4] P. Bellingeri, H. Chemin, and V. Lebed, Cactus groups, twin groups, and right-angled Artin groups, J. Algebr. Comb., 59, (2024), 153–178. 1
[5] W. Burau, Braids, uber zopfgruppen and gleichsinnig verdrillte verkettungen, Abh. Math. Semin. Hamburg Univ, 11, (1936), 179-186. 1, 2, 2.7
[6] M. Chreif and M. Dally, On the irreducibility of local representations of the braid group Bn, Arab. J. Math., 13, (2024), 263–273. 1
[7] E. Formanek, Braid group representations of low degree, Proc. London Math Soc., 73 (3), (1996), 279-322. 2
[8] V. Keshari, M. Nasser, and M. Prabhakar, On representations of the multi-virtual braid group MkV Bn and the multi-welded braid group MkWBn, (2025), arXiv:2508.04168. 1
[9] M. Khovanov, Real K(π,1) arrangements from finite root systems, Math. Res. Lett., 3, (1996), 261-274. 1
[10] M. Khovanov, Doodle groups, Trans. Amer. Math. Soc., 349, (1997), 2297-2315. 1
[11] R. Lawrence, Homological representations of the Hecke algebra, Comm. Math. Phys., 135 (1), (1990), 141–191. 1
[12] T. Mayassi and M. Nasser, Classification of homogeneous local representations of the singular braid monoid, Arab. J. of Math., (2025). 1
[13] T. Mayassi and M. Nasser, On the classification and irreducibility of 2-local representations of the twin group Tn, (2025), arXiv:2508.14505. 1, 2
[14] A. Merkov, Vassiliev invariants classify flat braids, Differential and symplectic topology of knots and curves, volume 190 of Amer. Math. Soc. Transl. Ser. 2, pages 83–102. Amer. Math. Soc., Providence, RI, 1999. 1
[15] Y. Mikhalchishina, Local representations of braid groups, Sib. Math. J., 54 (4), (2013), 666–678. 1
[16] J. Mostovoy and C. Roque-M´arquez, Planar pure braids on six strands, J. Knot Theo. Rami., 29 (1), (2020), 1950097.1
[17] M. Nasser, Necessary and sufficient conditions for the irreducibility of a linear representation of the braid group Bn, Arab. J. Math., 13, (2024), 333-339. 2
[18] M. Nasser, M. Chreif, and M. Dally, Local representations of the flat virtual braid group, (2025), arXiv:2503.06607. 1
[19] M. Nasser, Local extensions and Φ-type extensions of some local representations of the braid group Bn to the singular braid monoid SMn, Vietnam Journal of Mathematics, (2025) 1-12. 2
[20] M. Nasser, Twin groups representations, (2025), arXiv:2507.15005. 2, 2.9, 2.10
[21] T. Naik, N. Nanda, and M. Singh, Some remarks on twin groups, J. Knot Theo. Rami., 29 (10), (2020), 2042006. 1
[22] G. Shabat and V. Voevodsky, Drawing curves over number fields, The Grothendieck Festschrift, Vol. III, 199-227, Progr. Math., 88, Birkhuser Boston, Boston, MA, 1990. 1, 2, 2.2
[23] D. Tong, S. Yang and Z. Ma, A new class of representations of braid groups, Comm. Theoret. Phys., 26 (4), (1996), 483-486. 1
[24] M. Wada, Group invariants of links, Topology, 31 (2), (1992), 399–406. 1
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Mohamad N. Nasser

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

