Leap Edge Eccentricity Connectivity Index of PAMAM and Porphyrin-Cored Dendrimers

Authors

  • Özge Çolakoglu Department of Mathematics, Faculty of Science, Mersin University, 33343, Mersin, Turkey.
  • Yusuf Ayday Department of Mathematics, Graduate School of Natural and Applied Sciences, Mersin University, 33343, Mersin, Turkey

Keywords:

Graph theory, topological index, dendrimer graphs

Abstract

With the rapid advancement of technology, computer-aided methods are increasingly employed to study the structural properties of chemical compounds. One such approach involves predicting chemical behavior
 using topological indices—numerical descriptors derived from graph-theoretic representations of molecular structures.
 In this paper, the leap edge eccentricity connectivity index is introduced distance-based topological index that can be regarded as both the edge version of the leap eccentric connectivity index and the leap version of the edge eccentric connectivity index and investigates the leap edge eccentricity connectivity index (LEECI) for Polyamidoamine (PAMAM) dendrimers and porphyrin-cored dendrimers through exact analytical computations. By modeling these nanostructures as molecular graphs, LEECI values are derived for multiple dendrimer generations and architectures. The results reveal strong correlations between branching  complexity and index growth, highlighting LEECI as a promising descriptor in computational nanomaterial characterization and drug delivery design. These findings provide a foundation for integrating LEECI into predictive models linking molecular topology with experimental bioactivity.

Downloads

Download data is not yet available.

References

[1] E. Abbasi, S. F. Aval, A. Akbarzadeh, M. Milani, H. T. Nasrabadi, S. W. Joo et al., Dendrimers: synthesis,

applications, and properties, Nanoscale Res. Lett., 9 (2014), 1–10. 1

[2] M. Azari and F. Falahati-Nezhad, A graph theoretical study of porphyrin-cored dendrimers by means of Sombor

indices: a computational approach, Mol. Phys., 2024 (2024), e2402779. 2, 2, 2

[3] R. Diestel, Graph Theory, Springer-Verlag, New York, 2000. 2

[4] A. Iranmanesh, I. Gutman, O. Khormali, and A. Mahmiani, The edge versions of the Wiener index. MATCH

Commun. Math. Computt. Chem., 61(3) (2009), 663–672. 2

[5] Dendritech Inc., Poly(amidoamine) (PAMAM) dendrimer, https://www.dendritech.com/pamam.html, accessed March 3, 2025. 2

[6] A. Ghalavand, S. Klavˇzar, M. Tavakoli, M. Hakimi-Nezhaad and F. Rahbarnia, Leap eccentric connectivity index in graphs with universal vertices, Appl. Math. Comput., 436 (2023), 127519. 1

[7] M. Ghorbani and M. A. Hosseinzadeh, A new version of Zagreb indices, Filomat, 26(1) (2012), 93–100. 1

[8] I. Gutman and N. Trinajsti´c, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocar bons, Chem. Phys. Lett., 17(4) (1972), 535–538. 1

[9] M. Hasani and M. M. Ghods, M-polynomials and topological indices of porphyrin-cored dendrimers, Chem. Methodol.,7 (2023), 288–306. 1

[10] A. J. M. Khalaf, A. Javed, M. K. Jamil, M. Alaeiyan and M. R. Farahani, Topological properties of four types of porphyrin dendrimers, Proyecciones (Antofagasta), 39(4) (2020), 979–993. 1

[11] H. R. Manjunathe, A. M. Naji, P. Shiladhar and N. D. Soner, Leap eccentric connectivity index of some graph operations, Int. J. Res. Anal. Rev., 6(1) (2019), 882–887. 1

[12] A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim., 2(2) (2017), 99–117. 1

[13] S. Pawar, A. M. Naji, N. D. Soner and I. N. Cangul, On leap eccentric connectivity index of graphs, Adv. Math. Sci. Appl., 2021 (2021), 1–7. 1

[14] P. Sarkar, N. De, ˙ I. N. Cang¨ul and A. Pal, Generalized Zagreb index of some dendrimer structures, Univ. J. Math. Appl., 1(3) (2018), 160–165. 1

[15] V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure–property and structure–activity studies, J. Chem. Inf. Comput. Sci., 37(2) (1997), 273-282. 1

[16] F. Saintmont, J. De Winter, F. Chirot, F. Halin, P. Dugourd, P., Brocorens and P. Gerbaux . How spherical are gaseous low charged dendrimer ions: A molecular dynamics/ion mobility study?. J. Am. Soc. Mass Spectrom., 31(8) (2020), 1673-1683. 2

[17] N. Trinajsti´c, Chemical Graph Theory, 2nd ed., CRC Press, Boca Raton, 2018. 1

[18] X. Xu and Y. Guo, The edge version of eccentric connectivity index, Int. Math. Forum, 7(6) (2012), 273–280. 1

[19] D. Zhao, Z. Iqbal, R. Irfan, M. A. Chaudhry, M. Ishaq, M. K. Jamil and A. Fahad, Comparison of irregularity indices of several dendrimers structures, Processes, 7(10) (2019), 662

Downloads

Published

2025-09-26

How to Cite

Leap Edge Eccentricity Connectivity Index of PAMAM and Porphyrin-Cored Dendrimers. (2025). Journal of Prime Research in Mathematics, 21(2), 1-12. https://jprm.sms.edu.pk/index.php/jprm/article/view/283