Leap Edge Eccentricity Connectivity Index of PAMAM and Porphyrin-Cored Dendrimers
Keywords:
Graph theory, topological index, dendrimer graphsAbstract
With the rapid advancement of technology, computer-aided methods are increasingly employed to study the structural properties of chemical compounds. One such approach involves predicting chemical behavior
using topological indices—numerical descriptors derived from graph-theoretic representations of molecular structures.
In this paper, the leap edge eccentricity connectivity index is introduced distance-based topological index that can be regarded as both the edge version of the leap eccentric connectivity index and the leap version of the edge eccentric connectivity index and investigates the leap edge eccentricity connectivity index (LEECI) for Polyamidoamine (PAMAM) dendrimers and porphyrin-cored dendrimers through exact analytical computations. By modeling these nanostructures as molecular graphs, LEECI values are derived for multiple dendrimer generations and architectures. The results reveal strong correlations between branching complexity and index growth, highlighting LEECI as a promising descriptor in computational nanomaterial characterization and drug delivery design. These findings provide a foundation for integrating LEECI into predictive models linking molecular topology with experimental bioactivity.
Downloads
References
[1] E. Abbasi, S. F. Aval, A. Akbarzadeh, M. Milani, H. T. Nasrabadi, S. W. Joo et al., Dendrimers: synthesis,
applications, and properties, Nanoscale Res. Lett., 9 (2014), 1–10. 1
[2] M. Azari and F. Falahati-Nezhad, A graph theoretical study of porphyrin-cored dendrimers by means of Sombor
indices: a computational approach, Mol. Phys., 2024 (2024), e2402779. 2, 2, 2
[3] R. Diestel, Graph Theory, Springer-Verlag, New York, 2000. 2
[4] A. Iranmanesh, I. Gutman, O. Khormali, and A. Mahmiani, The edge versions of the Wiener index. MATCH
Commun. Math. Computt. Chem., 61(3) (2009), 663–672. 2
[5] Dendritech Inc., Poly(amidoamine) (PAMAM) dendrimer, https://www.dendritech.com/pamam.html, accessed March 3, 2025. 2
[6] A. Ghalavand, S. Klavˇzar, M. Tavakoli, M. Hakimi-Nezhaad and F. Rahbarnia, Leap eccentric connectivity index in graphs with universal vertices, Appl. Math. Comput., 436 (2023), 127519. 1
[7] M. Ghorbani and M. A. Hosseinzadeh, A new version of Zagreb indices, Filomat, 26(1) (2012), 93–100. 1
[8] I. Gutman and N. Trinajsti´c, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocar bons, Chem. Phys. Lett., 17(4) (1972), 535–538. 1
[9] M. Hasani and M. M. Ghods, M-polynomials and topological indices of porphyrin-cored dendrimers, Chem. Methodol.,7 (2023), 288–306. 1
[10] A. J. M. Khalaf, A. Javed, M. K. Jamil, M. Alaeiyan and M. R. Farahani, Topological properties of four types of porphyrin dendrimers, Proyecciones (Antofagasta), 39(4) (2020), 979–993. 1
[11] H. R. Manjunathe, A. M. Naji, P. Shiladhar and N. D. Soner, Leap eccentric connectivity index of some graph operations, Int. J. Res. Anal. Rev., 6(1) (2019), 882–887. 1
[12] A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim., 2(2) (2017), 99–117. 1
[13] S. Pawar, A. M. Naji, N. D. Soner and I. N. Cangul, On leap eccentric connectivity index of graphs, Adv. Math. Sci. Appl., 2021 (2021), 1–7. 1
[14] P. Sarkar, N. De, ˙ I. N. Cang¨ul and A. Pal, Generalized Zagreb index of some dendrimer structures, Univ. J. Math. Appl., 1(3) (2018), 160–165. 1
[15] V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure–property and structure–activity studies, J. Chem. Inf. Comput. Sci., 37(2) (1997), 273-282. 1
[16] F. Saintmont, J. De Winter, F. Chirot, F. Halin, P. Dugourd, P., Brocorens and P. Gerbaux . How spherical are gaseous low charged dendrimer ions: A molecular dynamics/ion mobility study?. J. Am. Soc. Mass Spectrom., 31(8) (2020), 1673-1683. 2
[17] N. Trinajsti´c, Chemical Graph Theory, 2nd ed., CRC Press, Boca Raton, 2018. 1
[18] X. Xu and Y. Guo, The edge version of eccentric connectivity index, Int. Math. Forum, 7(6) (2012), 273–280. 1
[19] D. Zhao, Z. Iqbal, R. Irfan, M. A. Chaudhry, M. Ishaq, M. K. Jamil and A. Fahad, Comparison of irregularity indices of several dendrimers structures, Processes, 7(10) (2019), 662
Downloads
Published
Issue
Section
License
Copyright (c) 2025 ÖZGE ÇOLAKOĞLU, Yusuf Ayday

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.