### Connective eccentricity index of certain path-thorn graphs

JPRM-Vol. 1 (2018), Issue 1, pp. 87 – 99 Open Access Full-Text PDF

**M. Javaid, M. Ibraheem, A. A. Bhatti**

**Abstract:**Let \(G\) be a simple connected graph with \(V (G)\) and \(E(G)\) as the vertex set and edge set respectively. A topological index is a numeric quantity by which we can characterize the whole structure of a molecular graph or a network to predict the physical or chemical activities of the involved chemical compounds in the molecular graph or network. The connective eccentricity index of the graph \(G\) is defined as \(ξ^{ce}(G) = \sum_{v∈G}\frac{d(v)}{e(v)}\), where \(d(v)\) and \(e(v)\) denote the degree and eccentricity of the vertex \(v ∈ G\) respectively. In this paper, we compute the connective eccentricity index of the various families of the path-thorn graphs and present the obtained results with the help of suitable mathematical expressions consisting on various summations. More precisely, the computed results are general extensions of the some known results.