Journal of Prime Research in Mathematics

Journal of Prime Research in Mathematics (JPRM) ISSN: 1817-3462 (Online) 1818-5495 (Print) is an HEC recognized, Scopus indexed, open access journal which provides a plate forum to the international community all over the world to publish their work in mathematical sciences. JPRM is very much focused on timely processed publications keeping in view the high frequency of upcoming new ideas and make those new ideas readily available to our readers from all over the world for free of cost. Starting from 2020, we publish one Volume each year containing two issues in June and December. The accepted papers will be published online immediate in the running issue. All issues will be gathered in one volume which will be published in December of every year.

Latest Published Articles

New results on periodic solutions for a nonlinear fourth-order iterative differential equation

JPRM-Vol. 18 (2022), Issue 2, pp. 88 – 99 Open Access Full-Text PDF
Rabah Khemis, Ahl`eme Bouakkaz
Abstract: The key task of this paper is to investigate a nonlinear fourth-order delay differential equation. By virtue of the fixed point theory and the Green’s functions method, we establish some new results on the existence, uniqueness and continuous dependence on parameters of periodic solutions. In addition, an example is given to corroborate the validity of our main results. Up to now, no work has been carried out on this topic. So, the findings of this paper are new and complement the available works in the literature to some degree.
Read Full Article

Chen and Casorati curvature inequalities for the submanifolds of quaternionic Kaehler manifolds endowed with Ricci quarter-symmetric metric connection

JPRM-Vol. 18 (2022), Issue 2, pp. 72 – 87 Open Access Full-Text PDF
Mehraj Ahmad Lone, Umair Ali Wani
Abstract: In this paper, authors have established Chen’s inequalities for the submanifolds of quaternionic Kaehler manifolds characterized by Ricci quarter-symmetric metric connection. Other than these inequalities, generalized normalized Casorati curvature inequalities have been derived.
Read Full Article

A Novel Approach for the Visualization of Constrained Data using GC1 Bi-Cubic Functions

JPRM-Vol. 18 (2022), Issue 2, pp. 55 – 71 Open Access Full-Text PDF
Farheen Ibraheem, Ayesha Shakeel, Muhammad Bilal Riaz
Abstract: One of the fundamental issues in engineering, computer graphics, data visualization, interpolation and many more areas is to create a shape preserving surface from supplied data points. Data can be characterized as convex, monotone and positive. This research focuses on developing new smooth and efficient shape preserving schemes for convex, monotone and positive 3D data set positioned on a rectangular mesh. For this purpose, a GC1 continuous cubic function with two free parameters have been advanced to GC1 bicubic coons surface patches. There are eight free shape parameters in each rectangular patch which are constrained to ascertain these intrinsic data attributes that is convexity, positivity and monotonicity. The proposed interpolant governs the shape of data locally and data dependent constraints on shape parameters manage the shape preservation. Moreover, proposed scheme is verified and demonstrated graphically
Read Full Article

On the solutions of nonlinear Caputo–Fabrizio fractional partial differential equations arising in applied mathematics

JPRM-Vol. 18 (2022), Issue 2, pp. 42 – 54 Open Access Full-Text PDF
Ali Khalouta
Abstract: This paper proposes a new semi-analytical method known as the variational iteration transform method (VITM) to obtain the solutions of the nonlinear Caputo–Fabrizio fractional partial differential equations arising in applied mathematics. For nonlinear equations in general, there is no method that gives an exact solution and, therefore, only approximate analytical solutions can be derived by using procedures such as linearization or perturbation. This method is combined form of the Aboodh transform and the variational iteration method. The advantage of VITM is the simplicity of the computations and the non-requirement of linearization or smallness assumptions. Moreover, this method enables us to overcome the difficulties arising in identifying the general Lagrange multiplier. For further illustrations of the efficiency and reliability of VITM, some numerical applications are pesented. The numerical results showed that the proposed method is efficient and precise to obtain the solutions of nonlinear fractional partial differential equations.
Read Full Article

On Split Equilibrium and Fixed Point Problems for Finite Family of Bregman Quasi-Nonexpansive Mappings in Banach spaces

JPRM-Vol. 18 (2022), Issue 2, pp. 23 – 41 Open Access Full-Text PDF
H. A. Abass, O. K. Narain, K. O. Oyewole, U. O. Adiele
Abstract: In this paper, we introduce a trifunction split equilibrium problem using a generalized relaxed α-monotonicity in the framework of p-uniformly convex and uniformly smooth Banach spaces. We develop an iterative algorithm for approximating a common solution of split equilibrium problem and fixed point problem for finite family of Bregman quasi-nonexpansive mappings. Using our iterative algorithm, we state and prove a strong convergence theorem for approximating a common solution of the aforementioned problems. Our iterative scheme is design in such a way that it does not require any knowledge of the operator norm. We display a numerical example to show the applicability of our result. Our result extends and complements some related results in literature.
Read Full Article

Generalized Identities and Inequalities of Čebyšev and Ky Fan Type for ∇−convex function

JPRM-Vol. 18 (2022), Issue 2, pp. 1 – 22 Open Access Full-Text PDF
Faraz Mehmood , Asif R. Khan
Abstract: In the present article we establish three generalizations, first generalization is related to discrete Čebyšev identity for function of higher order ∇ divided difference with two independent variables and give its special case as a sequence of higher order ∇ divided difference. Moreover, we deduce results of discrete inequality of Čebyšev involving higher order ∇−convex function. The second and third generalizations are for integral Čebyšev and integral Ky Fan identities for function of higher order derivatives with two independent variables and discuss its inequalities using ∇−convex function. Generalized results give similar results of Pěcari´c’s article [23] and recapture some established results.
Read Full Article

Volume 18 (2022)

Volume 17 (2021)

Volume 16 (2020)

Volume 15 (2019)

Volume 14 (2018)

Volume 13 (2017)

Volume 12 (2016)

Volume 11 (2015)

Volume 10 (2014)

Volume 09 (2013)

Volume 08 (2012)

Volume 07 (2011)

Volume 06 (2010)

Volume 05 (2009)

Volume 04 (2008)

Volume 03 (2007)

Volume 02 (2006)

Volume 01 (2005)