Journal of Prime Research in Mathematics

Journal of Prime Research in Mathematics (JPRM) ISSN: 1817-3462 (Online) 1818-5495 (Print) is an HEC recognized, Scopus indexed, open access journal which provides a plate forum to the international community all over the world to publish their work in mathematical sciences. JPRM is very much focused on timely processed publications keeping in view the high frequency of upcoming new ideas and make those new ideas readily available to our readers from all over the world for free of cost. Starting from 2020, we publish one Volume each year containing two issues in June and December. The accepted papers will be published online immediate in the running issue. All issues will be gathered in one volume which will be published in December of every year.

Latest Published Articles

\(λ\)-fractional schwarzian derivative and \(λ\)-fractional mobius transformation

JPRM-Vol. 1 (2010), Issue 1, pp. 56 – 61 Open Access Full-Text PDF
Y. Polatoglu
Abstract: We denote by A the class of all analytic functions in the open unit disk \(\mathbb{D} = {z | |z| < 1}\) which satisfy the conditions \(f(0) = 0\), \(f'(0) = 1\). In this paper we define a new concept of \(λ\)− fractional Schwarzian derivative and \(λ\)− fractional Mobius transformation for the class A. We also formulate the criterion for a function to be univalent using the fractional Schwarzian.
Read Full Article

Some exact solutions for the flow of a Newtonian fluid with heat transfer via prescribed vorticity

JPRM-Vol. 1 (2010), Issue 1, pp. 38 – 55 Open Access Full-Text PDF
M. Jamil, N. A. Khan, A. Mahmood, G. Murtaza, Q. Din
Abstract: Two-dimensional , steady, laminar equations of motion of an incompressible fluid with variable viscosity and heat transfer equations are considered. The problem investigated is the flow for which the vorticity distribution is proportional to the stream function perturbed by a sinusoidal stream. Employing transformation variable, the governing Navier-Stokes Equations are transformed into the ordinary differential equations and exact solutions are obtained. Finally, the influence of different parameters of interest on the velocity, temperature and pressure profiles are plotted and discussed.
Read Full Article

Some distributional properties of the concomitants of record statistics for bivariate pseudo–exponential distribution and characterization

JPRM-Vol. 1 (2010), Issue 1, pp. 32 – 37 Open Access Full-Text PDF
Muhammad Mohsin, Juergen Pilz, Spoeck Gunter, Saman Shahbaz, Muhammad Qaiser Shahbaz
Abstract: A new class of distributions known as Bivariate Pseudo–Exponential distribution has been defined. The distribution of r–th concomitant and joint distribution of r–th and s–th concomitant of record statistics of the resulting distribution have been derived. Expression for single and product moments has also been obtained for the resulting distributions. A characterization of the k-th concomitant of record statistics for the Pseudoexponential distribution by the conditional expectation is presented.
Read Full Article

Graphs with same diameter and metric dimension

JPRM-Vol. 1 (2010), Issue 1, pp. 22 – 31 Open Access Full-Text PDF
Imrana Kousar, Ioan Tomescu, Syed Muhammad Husnine
Abstract: The cardinality of a metric basis of a connected graph \(G\) is called its metric dimension, denoted by \(dim(G)\) and the maximum value of distance between vertices of \(G\) is called its diameter. In this paper, the graphs \(G\) with diameter 2 are characterized when \(dim(G) = 2.\)
Read Full Article

Forcing edge detour number of an edge detour graph

JPRM-Vol. 1 (2010), Issue 1, pp. 13 – 21 Open Access Full-Text PDF
A. P. Santhakumaran, S. Athisayanathan
Abstract: For two vertices \(u\) and \(v\) in a graph \(G = (V, E)\), the detour distance \(D(u, v)\) is the length of a longest \(u–v\) path in \(G\). A \(u–v\) path of length \(D(u, v)\) is called a \(u–v\) detour. A set \(S ⊆ V\) is called an edge detour set if every edge in \(G\) lies on a detour joining a pair of vertices of \(S\). The edge detour number \(dn_1(G)\) of G is the minimum order of its edge detour sets and any edge detour set of order \(dn_1(G)\) is an edge detour basis of \(G\). A connected graph \(G\) is called an edge detour graph if it has an edge detour set. A subset \(T\) of an edge detour basis \(S\) of an edge detour graph \(G\) is called a forcing subset for \(S\) if \(S\) is the unique edge detour basis containing \(T\). A forcing subset for \(S\) of minimum cardinality is a minimum forcing subset of \(S\). The forcing edge detour number \(fdn_1(S)\) of \(S\), is the minimum cardinality of a forcing subset for \(S\). The forcing edge detour number \(fdn_1(G)\) of \(G\), is \(min{fdn_1(S)}\), where the minimum is taken over all edge detour bases \(S\) in \(G\). The general properties satisfied by these forcing subsets are discussed and the forcing edge detour numbers of certain classes of standard edge detour graphs are determined. The parameters \(dn_1(G)\) and \(fdn_1(G)\) satisfy the relation \(0 ≤ fdn_1(G) ≤ dn_1(G)\) and it is proved that for each pair \(a\), \(b\) of integers with \(0 ≤ a ≤ b\) and \(b ≥ 2\), there is an edge detour graph \(G\) with \(fdn_1(G) = a\) and \(dn_1(G) = b\).
Read Full Article

Divisor path decomposition number of a graph

JPRM-Vol. 1 (2010), Issue 1, pp. 01 – 12 Open Access Full-Text PDF
K. Nagarajan, A. Nagarajan
Abstract: A decomposition of a graph G is a collection Ψ of edge-disjoint subgraphs \(H_1,H_2, . . . , H_n\) of \(G\) such that every edge of \(G\) belongs to exactly one \(H_i\). If each \(H_i\) is a path in \(G\), then \(Ψ\) is called a path partition or path cover or path decomposition of \(G\). A divisor path decomposition of a \((p, q)\) graph \(G\) is a path cover \(Ψ\) of \(G\) such that the length of all the paths in \(Ψ\) divides \(q\). The minimum cardinality of a divisor path decomposition of \(G\) is called the divisor path decomposition number of \(G\) and is denoted by \(π_D(G)\). In this paper, we initiate a study of the parameter \(π_D\) and determine the value of \(π_D\) for some standard graphs. Further, we obtain some bounds for \(π_D\) and characterize graphs attaining the bounds.
Read Full Article

Volume 20 (2024)

Volume 19 (2023)

Volume 18 (2022)

Volume 17 (2021)

Volume 16 (2020)

Volume 15 (2019)

Volume 14 (2018)

Volume 13 (2017)

Volume 12 (2016)

Volume 11 (2015)

Volume 10 (2014)

Volume 09 (2013)

Volume 08 (2012)

Volume 07 (2011)

Volume 06 (2010)

Volume 05 (2009)

Volume 04 (2008)

Volume 03 (2007)

Volume 02 (2006)

Volume 01 (2005)