Journal of Prime Research in Mathematics

Journal of Prime Research in Mathematics (JPRM) ISSN: 1817-3462 (Online) 1818-5495 (Print) is an HEC recognized, Scopus indexed, open access journal which provides a plate forum to the international community all over the world to publish their work in mathematical sciences. JPRM is very much focused on timely processed publications keeping in view the high frequency of upcoming new ideas and make those new ideas readily available to our readers from all over the world for free of cost. Starting from 2020, we publish one Volume each year containing four issues in March, June, September and December. The accepted papers will be published online immediate in the running issue. All issues will be gathered in one volume which will be published in December of every year.

Latest Published Articles

A degenerate hydrodynamic dispersion model

JPRM-Vol. 1 (2007), Issue 1, pp. 140 – 153 Open Access Full-Text PDF
Sergey Sazhenkov
Abstract: A Cauchy problem for a two-dimensional ultra-parabolic model of filtration through a porous ground of a viscous incompressible fluid containing a solute (tracer) is considered. The fluid is driven by the buoyancy force. The phenomenon of molecular diffusion of the tracer into the porous ground is taken into account. The porous ground consists of one dimensional filaments oriented along some smooth non-degenerate vector field. Two cases are distinguished depending on spatial orientation of the filaments, and existence of generalized entropy solutions is proved for the both. In the first case, all filaments are parallel to the buoyancy (gravitational) force and, except for this, the equations of the model have rather general forms. In the second case, the filaments can be nonparallel to the buoyancy force and to each other, in general, but their geometric structure must be genuinely nonlinear. The proofs rely on the method of kinetic equation and the theory of Young measures and H-measures.
Read Full Article

Quality Surface Construction

JPRM-Vol. 1 (2007), Issue 1, pp. 129 – 139 Open Access Full-Text PDF
Cripps R. J
Abstract:  Current surface construction methods in CADCAM use parametric polynomial equations in the form of a NURBS. This representation is ideal for computer-based implementations, allowing efficient interrogation. However, issues exist in constructing and manipulating such surfaces. When constructing a NURBS surface there are difficulties in determining constraints such as parameterisation, tangent magnitudes and twist vectors. Controlling the geometric features like curvature profiles of sectional/longitudinal curves on a NURBS surface is problematical as is joining several such surfaces together. A cause of these difficulties in control is that the control points do not lie on the surface itself. An alternative approach to surface construction is to specify the curvature and construct the surface so that it satisfies the curvature constraints. Since NURBS does not directly allow this, a fundamentally different approach is required. The key is to adopt a point-based approach where the surface is defined by a small number of points lying on the surface. Intermediate points are then constructed using a recursive approach which is defined to ensure that the curvature profile between adjacent points is of a very  high quality. A case study is presented that illustrates the point-based approach.
Read Full Article

On newton interpolating series and their applications

JPRM-Vol. 1 (2007), Issue 1, pp. 120 – 128 Open Access Full-Text PDF
Ghiocel Groza
Abstract: Newton interpolating series are constructed by means of Newton interpolating polynomials with coefficients in an arbitrary field \(K\) (see Section 1). If \(K = \mathbb{C}\) is the field of complex numbers with the ordinary absolute value, particular convergent series of this form were used in number theory to prove the transcendence of some values of exponential series (see Theorem 1). Moreover, if \(K = \mathbb{R}\), by means of these series it can be obtained solutions of a multipoint boundary value problem for a linear ordinary differential equation (see Theorem 2). If \(K = \mathbb{C}_{P}\), some particular convergent series of this type (so-called Mahler series) are used to represent all continuous functions from \(\mathbb{Z}_{P}\) in \(\mathbb{C}_{P}\) (see [4]). For an arbitrary field K, with respect to suitable addition and multiplication of two elements the set of Newton interpolating series becomes a commutative K-algebra \(K_{S}[[X]]\) which generalizes the canonical \(K\)-algebra of formal power series. If we consider K a local field, we construct a subalgebra of \(K_{S}[[X]]\), even for more variables, which is a generalization of Tate algebra used in rigid analytic geometry (see Section 3).
Read Full Article

Matrix lie rings that contains a one-dimentional lie algebra of semi-simple matrices

JPRM-Vol. 1 (2007), Issue 1, pp. 111 – 119 Open Access Full-Text PDF
Evgenii L. Bashkirov
Abstract: Let \(k\) be a field and \(\overline{k}\) an algebraic closure of \(k\). Suppose that \(k\)
contains more than five elements if char \(k \neq 2\). Let \(h\) be a one-dimensional subalgebra of the Lie \(k-\)algebra \(sl_{2}\overline{k}\) consisting of semi-simple matrices. In this paper, it is proved that if g is a subring of the Lie ring \(sl_{2}\overline{k}\) containing h, then g is either solvable or there exists a quaternion algebra A over a subfield \(F\) of \(\overline{k}\) such that \(F ⊇ k\) and g is isomorphic to the Lie \(F-\)algebra of all elements in A that are skew-symmetric with respect to a symplectic type involution defined on A.
Read Full Article

Volume 16 (2020)

Volume 15 (2019)

Volume 14 (2018)

Volume 13 (2017)

Volume 12 (2016)

Volume 11 (2015)

Volume 10 (2014)

Volume 09 (2013)

Volume 08 (2012)

Volume 07 (2011)

Volume 06 (2010)

Volume 05 (2009)

Volume 04 (2008)

Volume 03 (2007)

Volume 02 (2006)

Volume 01 (2005)