Journal of Prime Research in Mathematics

Journal of Prime Research in Mathematics (JPRM) ISSN: 1817-3462 (Online) 1818-5495 (Print) is an HEC recognized, Scopus indexed, open access journal which provides a plate forum to the international community all over the world to publish their work in mathematical sciences. JPRM is very much focused on timely processed publications keeping in view the high frequency of upcoming new ideas and make those new ideas readily available to our readers from all over the world for free of cost. Starting from 2020, we publish one Volume each year containing four issues in March, June, September and December. The accepted papers will be published online immediate in the running issue. All issues will be gathered in one volume which will be published in December of every year.

Latest Published Articles

Exact solutions for some unsteady flows of generalized second grade fluids in cylindrical domains

JPRM-Vol. 1 (2008), Issue 1, pp. 171 – 180 Open Access Full-Text PDF
Amir Mahmood, Constantin Fetecau, Imran Siddique
Abstract: The velocity field and the adequate shear stress, corresponding to the unsteady flow of generalized second grade fluids due to a constantly accelerating circular cylinder, are determined by means of the Hankel and Laplace transforms. The solutions that have been obtained satisfy all imposed initial and boundary conditions and for \(β → 1\) reduce to the similar solutions for the second grade fluids performing the same motion.
Read Full Article

A greedy approach for computing longest common subsequences

JPRM-Vol. 1 (2008), Issue 1, pp. 165 – 170 Open Access Full-Text PDF
Afroza Begum
Abstract: This paper presents an algorithm for computing Longest Common Subsequences for two sequences. Given two strings \(X\) and \(Y\) of length \(m\) and \(n\), we present a greedy algorithm, which requires \(O(n log s)\) preprocessing time, where s is distinct symbols appearing in string \(Y\) and \(O(m)\) time to determines Longest Common Subsequences.
Read Full Article

On the partition dimension of some wheel related graphs

JPRM-Vol. 1 (2008), Issue 1, pp. 154 – 164 Open Access Full-Text PDF
Imran Javaid, Sara Shoukat
Abstract: Let G be a connected graph. For a vertex \(v ∈ V (G)\) and an ordered \(k-\)partition \(Π = {S_1, S_2, …, S_k}\) of \(V (G)\), the representation of \(v\) with respect to \(Π\) is the \(k-\)vector r \((v|Π) = (d(v, S_1), d(v, S_2), …, d(v, S_k))\) where \(d(v, S_i) = min_{w∈S_i} d(v, w)(1 ≤ i ≤ k)\). The k-partition \(Π\) is said to be resolving if the k-vectors \(r(v|Π), v ∈ V (G)\), are distinct. The minimum \(k\) for which there is a resolving \(k\)-partition of \(V (G)\) is called the partition dimension of \(G\), denoted by \(pd(G)\). In this paper, we give upper bounds for the cardinality of vertices in some wheel related graphs namely gear graph, helm, sunflower and friendship graph with given partition dimension \(k\).
Read Full Article

Contractible fibers of polynomial functions

JPRM-Vol. 1 (2008), Issue 1, pp. 148 – 153 Open Access Full-Text PDF
Zahid Raza
Abstract: In this short note, we investigate the topology of complex polynomials \(f(x, y)\) in two variables. The description of the topology of the corresponding level curves \(C_t : f(x, y) = t\) is directly related to the vanishing of the leading coefficients cj (t) of the discriminant of the polynomial \(f(x, y) − t\), regarded as polynomials in \(t\).
Read Full Article

\(G_p\)-Finiteness of tensor product

JPRM-Vol. 1 (2008), Issue 1, pp. 143 – 147 Open Access Full-Text PDF
M.S. Balasubramani, K. T. Ravindran
Abstract: In this paper we introduce \(G_P\) finiteness of a Von-Neumann algebra and we define a G-dimension function. Then we prove a result on tensor product of fixed point algebra under group of automorphisms and finally verify a result under which the tensor product is \(G_P\) finite.
Read Full Article

Common fixed point theorems for two mappings in \(D^∗\)-metric spaces

JPRM-Vol. 1 (2008), Issue 1, pp. 132 – 142 Open Access Full-Text PDF
Shaban Sedghi, Nabi Shobe, Shahram Sedghi
Abstract: In this paper, we give some new definitions of \(D^∗\)-metric spaces and we prove a common fixed point theorem for two mappings under the condition of weakly compatible mappings in complete \(D^∗\)-metric spaces. We get some improved versions of several fixed point theorems in complete \(D^∗)-metric spaces.
Read Full Article

Volume 16 (2020)

Volume 15 (2019)

Volume 14 (2018)

Volume 13 (2017)

Volume 12 (2016)

Volume 11 (2015)

Volume 10 (2014)

Volume 09 (2013)

Volume 08 (2012)

Volume 07 (2011)

Volume 06 (2010)

Volume 05 (2009)

Volume 04 (2008)

Volume 03 (2007)

Volume 02 (2006)

Volume 01 (2005)