### Covering cover pebbling number for square of a cycle

**A. Lourdusamy, T. Mathivanan**

**Abstract:**Let \(G\) be a connected graph. Let p be the number of pebbles distributed on the vertices of \(G\). A pebbling move is defined by removing two pebbles from one vertex and put a pebble on an adjacent vertex. The covering cover pebbling number, \(σ(G)\), is the least p such that after a sequence of pebbling moves, the set of vertices should form a covering for \(G\) from every configuration of p pebbles on the vertices of \(G\). In this paper, we determine the covering cover pebbling number for square of a cycle.