Journal of Prime Research in Mathematics

Journal of Prime Research in Mathematics (JPRM) ISSN: 1817-3462 (Online) 1818-5495 (Print) is an HEC recognized, Scopus indexed, open access journal which provides a plate forum to the international community all over the world to publish their work in mathematical sciences. JPRM is very much focused on timely processed publications keeping in view the high frequency of upcoming new ideas and make those new ideas readily available to our readers from all over the world for free of cost. Starting from 2020, we publish one Volume each year containing two issues in June and December. The accepted papers will be published online immediate in the running issue. All issues will be gathered in one volume which will be published in December of every year.

Latest Published Articles

Elementary calculus in chevalley groups over rings

JPRM-Vol. 1 (2013), Issue 1, pp. 79 – 95 Open Access Full-Text PDF
Alexei Stepanov
Abstract: The article studies structure theory of Chevalley groups over commutative rings. Main results of the article are relative dilation and local-global principles. and an economic set of generators of relative elementary subgroup. These statements proved by computations with elementary unipotents (hence the title) are very important in further development of the subject. No restrictions on the ground ring or the root system \(Φ\) are imposed except that the rank of \(Φ\) is not less than 2. The results improve previous results in the area. The article contains a brief survey of the subject, some gaps in proofs or incorrect references are discussed. Proofs of some known related results are substantially simplified.
Read Full Article

Construction of middle nuclear square loops

JPRM-Vol. 1 (2013), Issue 1, pp. 72 – 78 Open Access Full-Text PDF
Amir Khan, Muhammad Shah, Asif Ali
Abstract: Middle nuclear square loops are loops satisfying \(x(y(zz)) =(xy)(zz)\) for all \(x, y\) and \(z\). We construct an infinite family of nonassociative noncommutative middle nuclear square loops whose smallest member is of order 12.
Read Full Article

Comaximal factorization graphs in integral

JPRM-Vol. 1 (2013), Issue 1, pp. 65 – 71 Open Access Full-Text PDF
Shafiq Ur Rehman
Abstract: In [1], I. Beck introduced the idea of a zero divisor graph of a commutative ring and later in [2], J. Coykendall and J. Maney generalized this idea to study factorization in integral domains. They defined irreducible divisor graphs and used these irreducible divisor graphs to characterize UFDs. We define comaximal factorization graphs and use these graphs to characterize UCFDs defined in [3]. We also study that, in certain cases, comaximal factorization graph is formed by joining r copies of thecomplete graph \(K_m\) with one copy of complete graph \(K_n\) in common.
Read Full Article

Withdrawal and drainage of generalized second grade fluid on vertical cylinder with slip conditions

JPRM-Vol. 1 (2013), Issue 1, pp. 51 – 64 Open Access Full-Text PDF
M. Farooq, M. T. Rahim, S. Islam, A. M. Siddiqui
Abstract: This paper investigates the steady thin film flows of an incompressible Generalized second grade fluid under the influence of nonisothermal effects. These thin films are considered for two different problems, namely, withdrawal and drainage problems. The governing continuity and momentum equations are converted into ordinary differential equations. These equations are solved analytically. Expressions for the velocity profile, temperature distribution, volume flux, average velocity and shear stress are obtained in both the cases. Effects of different parameters on velocity and temperature are presented graphically.
Read Full Article

Weight characterization of the boundedness for the riemann-liouville discrete transform

JPRM-Vol. 1 (2013), Issue 1, pp. 34 – 50 Open Access Full-Text PDF
Alexander Meskhi, Ghulam Murtaza
Abstract: We establish necessary and sufficient conditions on a weight sequence \({v_j}^{∞}_{j}=1\) governing the boundedness for the Riemann-Liouville discrete transform \(I_α\) from \(l^p (\mathbb{N})\) to \(l^{q}_{vj}(N)\) (trace inequality), where \(0 < α < 1\). The derived conditions are of \(D\). Adams or Maz’ya–Verbitsky (pointwise) type.
Read Full Article

Exact wiener indices of the strong product of graphs

JPRM-Vol. 1 (2013), Issue 1, pp. 18 – 33 Open Access Full-Text PDF
K. Pattabiraman
Abstract: The Wiener index, denoted by \(W(G)\), of a connected graph \(G\) is the sum of all pairwise distances of vertices of the graph, that is, \(W(G) = \frac{1}{2} \sum_{u,v∈V (G)}d(u, v)\). In this paper, we obtain the Wiener index of the strong product of a path and a cycle and strong product of two cycles.
Read Full Article

Volume 20 (2024)

Volume 19 (2023)

Volume 18 (2022)

Volume 17 (2021)

Volume 16 (2020)

Volume 15 (2019)

Volume 14 (2018)

Volume 13 (2017)

Volume 12 (2016)

Volume 11 (2015)

Volume 10 (2014)

Volume 09 (2013)

Volume 08 (2012)

Volume 07 (2011)

Volume 06 (2010)

Volume 05 (2009)

Volume 04 (2008)

Volume 03 (2007)

Volume 02 (2006)

Volume 01 (2005)